|
from abc import ABCMeta, abstractmethod |
|
from collections import OrderedDict |
|
|
|
import mmcv |
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
from mmcv.runner import BaseModule, auto_fp16 |
|
|
|
from mmdet.core.visualization import imshow_det_bboxes |
|
|
|
|
|
class BaseDetector(BaseModule, metaclass=ABCMeta): |
|
"""Base class for detectors.""" |
|
|
|
def __init__(self, init_cfg=None): |
|
super(BaseDetector, self).__init__(init_cfg) |
|
self.fp16_enabled = False |
|
|
|
@property |
|
def with_neck(self): |
|
"""bool: whether the detector has a neck""" |
|
return hasattr(self, 'neck') and self.neck is not None |
|
|
|
|
|
|
|
@property |
|
def with_shared_head(self): |
|
"""bool: whether the detector has a shared head in the RoI Head""" |
|
return hasattr(self, 'roi_head') and self.roi_head.with_shared_head |
|
|
|
@property |
|
def with_bbox(self): |
|
"""bool: whether the detector has a bbox head""" |
|
return ((hasattr(self, 'roi_head') and self.roi_head.with_bbox) |
|
or (hasattr(self, 'bbox_head') and self.bbox_head is not None)) |
|
|
|
@property |
|
def with_mask(self): |
|
"""bool: whether the detector has a mask head""" |
|
return ((hasattr(self, 'roi_head') and self.roi_head.with_mask) |
|
or (hasattr(self, 'mask_head') and self.mask_head is not None)) |
|
|
|
@abstractmethod |
|
def extract_feat(self, imgs): |
|
"""Extract features from images.""" |
|
pass |
|
|
|
def extract_feats(self, imgs): |
|
"""Extract features from multiple images. |
|
|
|
Args: |
|
imgs (list[torch.Tensor]): A list of images. The images are |
|
augmented from the same image but in different ways. |
|
|
|
Returns: |
|
list[torch.Tensor]: Features of different images |
|
""" |
|
assert isinstance(imgs, list) |
|
return [self.extract_feat(img) for img in imgs] |
|
|
|
def forward_train(self, imgs, img_metas, **kwargs): |
|
""" |
|
Args: |
|
img (list[Tensor]): List of tensors of shape (1, C, H, W). |
|
Typically these should be mean centered and std scaled. |
|
img_metas (list[dict]): List of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys, see |
|
:class:`mmdet.datasets.pipelines.Collect`. |
|
kwargs (keyword arguments): Specific to concrete implementation. |
|
""" |
|
|
|
|
|
|
|
batch_input_shape = tuple(imgs[0].size()[-2:]) |
|
for img_meta in img_metas: |
|
img_meta['batch_input_shape'] = batch_input_shape |
|
|
|
async def async_simple_test(self, img, img_metas, **kwargs): |
|
raise NotImplementedError |
|
|
|
@abstractmethod |
|
def simple_test(self, img, img_metas, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def aug_test(self, imgs, img_metas, **kwargs): |
|
"""Test function with test time augmentation.""" |
|
pass |
|
|
|
async def aforward_test(self, *, img, img_metas, **kwargs): |
|
for var, name in [(img, 'img'), (img_metas, 'img_metas')]: |
|
if not isinstance(var, list): |
|
raise TypeError(f'{name} must be a list, but got {type(var)}') |
|
|
|
num_augs = len(img) |
|
if num_augs != len(img_metas): |
|
raise ValueError(f'num of augmentations ({len(img)}) ' |
|
f'!= num of image metas ({len(img_metas)})') |
|
|
|
samples_per_gpu = img[0].size(0) |
|
assert samples_per_gpu == 1 |
|
|
|
if num_augs == 1: |
|
return await self.async_simple_test(img[0], img_metas[0], **kwargs) |
|
else: |
|
raise NotImplementedError |
|
|
|
def forward_test(self, imgs, img_metas, **kwargs): |
|
""" |
|
Args: |
|
imgs (List[Tensor]): the outer list indicates test-time |
|
augmentations and inner Tensor should have a shape NxCxHxW, |
|
which contains all images in the batch. |
|
img_metas (List[List[dict]]): the outer list indicates test-time |
|
augs (multiscale, flip, etc.) and the inner list indicates |
|
images in a batch. |
|
""" |
|
for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: |
|
if not isinstance(var, list): |
|
raise TypeError(f'{name} must be a list, but got {type(var)}') |
|
|
|
num_augs = len(imgs) |
|
if num_augs != len(img_metas): |
|
raise ValueError(f'num of augmentations ({len(imgs)}) ' |
|
f'!= num of image meta ({len(img_metas)})') |
|
|
|
|
|
|
|
|
|
for img, img_meta in zip(imgs, img_metas): |
|
batch_size = len(img_meta) |
|
for img_id in range(batch_size): |
|
img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:]) |
|
|
|
if num_augs == 1: |
|
|
|
|
|
|
|
|
|
|
|
if 'proposals' in kwargs: |
|
kwargs['proposals'] = kwargs['proposals'][0] |
|
return self.simple_test(imgs[0], img_metas[0], **kwargs) |
|
else: |
|
assert imgs[0].size(0) == 1, 'aug test does not support ' \ |
|
'inference with batch size ' \ |
|
f'{imgs[0].size(0)}' |
|
|
|
assert 'proposals' not in kwargs |
|
return self.aug_test(imgs, img_metas, **kwargs) |
|
|
|
@auto_fp16(apply_to=('img', )) |
|
def forward(self, img, img_metas, return_loss=True, **kwargs): |
|
"""Calls either :func:`forward_train` or :func:`forward_test` depending |
|
on whether ``return_loss`` is ``True``. |
|
|
|
Note this setting will change the expected inputs. When |
|
``return_loss=True``, img and img_meta are single-nested (i.e. Tensor |
|
and List[dict]), and when ``resturn_loss=False``, img and img_meta |
|
should be double nested (i.e. List[Tensor], List[List[dict]]), with |
|
the outer list indicating test time augmentations. |
|
""" |
|
if return_loss: |
|
return self.forward_train(img, img_metas, **kwargs) |
|
else: |
|
return self.forward_test(img, img_metas, **kwargs) |
|
|
|
def _parse_losses(self, losses): |
|
"""Parse the raw outputs (losses) of the network. |
|
|
|
Args: |
|
losses (dict): Raw output of the network, which usually contain |
|
losses and other necessary infomation. |
|
|
|
Returns: |
|
tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor \ |
|
which may be a weighted sum of all losses, log_vars contains \ |
|
all the variables to be sent to the logger. |
|
""" |
|
log_vars = OrderedDict() |
|
for loss_name, loss_value in losses.items(): |
|
if isinstance(loss_value, torch.Tensor): |
|
log_vars[loss_name] = loss_value.mean() |
|
elif isinstance(loss_value, list): |
|
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) |
|
else: |
|
raise TypeError( |
|
f'{loss_name} is not a tensor or list of tensors') |
|
|
|
loss = sum(_value for _key, _value in log_vars.items() |
|
if 'loss' in _key) |
|
|
|
log_vars['loss'] = loss |
|
for loss_name, loss_value in log_vars.items(): |
|
|
|
if dist.is_available() and dist.is_initialized(): |
|
loss_value = loss_value.data.clone() |
|
dist.all_reduce(loss_value.div_(dist.get_world_size())) |
|
log_vars[loss_name] = loss_value.item() |
|
|
|
return loss, log_vars |
|
|
|
def train_step(self, data, optimizer): |
|
"""The iteration step during training. |
|
|
|
This method defines an iteration step during training, except for the |
|
back propagation and optimizer updating, which are done in an optimizer |
|
hook. Note that in some complicated cases or models, the whole process |
|
including back propagation and optimizer updating is also defined in |
|
this method, such as GAN. |
|
|
|
Args: |
|
data (dict): The output of dataloader. |
|
optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of |
|
runner is passed to ``train_step()``. This argument is unused |
|
and reserved. |
|
|
|
Returns: |
|
dict: It should contain at least 3 keys: ``loss``, ``log_vars``, \ |
|
``num_samples``. |
|
|
|
- ``loss`` is a tensor for back propagation, which can be a \ |
|
weighted sum of multiple losses. |
|
- ``log_vars`` contains all the variables to be sent to the |
|
logger. |
|
- ``num_samples`` indicates the batch size (when the model is \ |
|
DDP, it means the batch size on each GPU), which is used for \ |
|
averaging the logs. |
|
""" |
|
losses = self(**data) |
|
loss, log_vars = self._parse_losses(losses) |
|
|
|
outputs = dict( |
|
loss=loss, log_vars=log_vars, num_samples=len(data['img_metas'])) |
|
|
|
return outputs |
|
|
|
def val_step(self, data, optimizer): |
|
"""The iteration step during validation. |
|
|
|
This method shares the same signature as :func:`train_step`, but used |
|
during val epochs. Note that the evaluation after training epochs is |
|
not implemented with this method, but an evaluation hook. |
|
""" |
|
losses = self(**data) |
|
loss, log_vars = self._parse_losses(losses) |
|
|
|
outputs = dict( |
|
loss=loss, log_vars=log_vars, num_samples=len(data['img_metas'])) |
|
|
|
return outputs |
|
|
|
def show_result(self, |
|
img, |
|
result, |
|
score_thr=0.3, |
|
bbox_color=(72, 101, 241), |
|
text_color=(72, 101, 241), |
|
mask_color=None, |
|
thickness=2, |
|
font_size=13, |
|
win_name='', |
|
show=False, |
|
wait_time=0, |
|
out_file=None): |
|
"""Draw `result` over `img`. |
|
|
|
Args: |
|
img (str or Tensor): The image to be displayed. |
|
result (Tensor or tuple): The results to draw over `img` |
|
bbox_result or (bbox_result, segm_result). |
|
score_thr (float, optional): Minimum score of bboxes to be shown. |
|
Default: 0.3. |
|
bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. |
|
The tuple of color should be in BGR order. Default: 'green' |
|
text_color (str or tuple(int) or :obj:`Color`):Color of texts. |
|
The tuple of color should be in BGR order. Default: 'green' |
|
mask_color (None or str or tuple(int) or :obj:`Color`): |
|
Color of masks. The tuple of color should be in BGR order. |
|
Default: None |
|
thickness (int): Thickness of lines. Default: 2 |
|
font_size (int): Font size of texts. Default: 13 |
|
win_name (str): The window name. Default: '' |
|
wait_time (float): Value of waitKey param. |
|
Default: 0. |
|
show (bool): Whether to show the image. |
|
Default: False. |
|
out_file (str or None): The filename to write the image. |
|
Default: None. |
|
|
|
Returns: |
|
img (Tensor): Only if not `show` or `out_file` |
|
""" |
|
img = mmcv.imread(img) |
|
img = img.copy() |
|
if isinstance(result, tuple): |
|
bbox_result, segm_result = result |
|
if isinstance(segm_result, tuple): |
|
segm_result = segm_result[0] |
|
else: |
|
bbox_result, segm_result = result, None |
|
bboxes = np.vstack(bbox_result) |
|
labels = [ |
|
np.full(bbox.shape[0], i, dtype=np.int32) |
|
for i, bbox in enumerate(bbox_result) |
|
] |
|
labels = np.concatenate(labels) |
|
|
|
segms = None |
|
if segm_result is not None and len(labels) > 0: |
|
segms = mmcv.concat_list(segm_result) |
|
if isinstance(segms[0], torch.Tensor): |
|
segms = torch.stack(segms, dim=0).detach().cpu().numpy() |
|
else: |
|
segms = np.stack(segms, axis=0) |
|
|
|
if out_file is not None: |
|
show = False |
|
|
|
img = imshow_det_bboxes( |
|
img, |
|
bboxes, |
|
labels, |
|
segms, |
|
class_names=self.CLASSES, |
|
score_thr=score_thr, |
|
bbox_color=bbox_color, |
|
text_color=text_color, |
|
mask_color=mask_color, |
|
thickness=thickness, |
|
font_size=font_size, |
|
win_name=win_name, |
|
show=show, |
|
wait_time=wait_time, |
|
out_file=out_file) |
|
|
|
if not (show or out_file): |
|
return img |
|
|