3v324v23's picture
Add files
c9019cd
raw
history blame
5.75 kB
import argparse
import glob
import json
import os.path as osp
import shutil
import subprocess
import mmcv
import torch
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
if 'optimizer' in checkpoint:
del checkpoint['optimizer']
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
torch.save(checkpoint, out_file)
sha = subprocess.check_output(['sha256sum', out_file]).decode()
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
subprocess.Popen(['mv', out_file, final_file])
return final_file
def get_final_epoch(config):
cfg = mmcv.Config.fromfile('./configs/' + config)
return cfg.total_epochs
def get_final_results(log_json_path, epoch, results_lut):
result_dict = dict()
with open(log_json_path, 'r') as f:
for line in f.readlines():
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
if log_line['mode'] == 'train' and log_line['epoch'] == epoch:
result_dict['memory'] = log_line['memory']
if log_line['mode'] == 'val' and log_line['epoch'] == epoch:
result_dict.update({
key: log_line[key]
for key in results_lut if key in log_line
})
return result_dict
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'out', type=str, help='output path of gathered models to be stored')
args = parser.parse_args()
return args
def main():
args = parse_args()
models_root = args.root
models_out = args.out
mmcv.mkdir_or_exist(models_out)
# find all models in the root directory to be gathered
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
if osp.exists(osp.join(models_root, raw_config)):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config in used_configs:
exp_dir = osp.join(models_root, used_config)
# check whether the exps is finished
final_epoch = get_final_epoch(used_config)
final_model = 'epoch_{}.pth'.format(final_epoch)
model_path = osp.join(exp_dir, final_model)
# skip if the model is still training
if not osp.exists(model_path):
continue
# get the latest logs
log_json_path = list(
sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
cfg = mmcv.Config.fromfile('./configs/' + used_config)
results_lut = cfg.evaluation.metric
if not isinstance(results_lut, list):
results_lut = [results_lut]
# case when using VOC, the evaluation key is only 'mAP'
results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key]
model_performance = get_final_results(log_json_path, final_epoch,
results_lut)
if model_performance is None:
continue
model_time = osp.split(log_txt_path)[-1].split('.')[0]
model_infos.append(
dict(
config=used_config,
results=model_performance,
epochs=final_epoch,
model_time=model_time,
log_json_path=osp.split(log_json_path)[-1]))
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
mmcv.mkdir_or_exist(model_publish_dir)
model_name = osp.split(model['config'])[-1].split('.')[0]
model_name += '_' + model['model_time']
publish_model_path = osp.join(model_publish_dir, model_name)
trained_model_path = osp.join(models_root, model['config'],
'epoch_{}.pth'.format(model['epochs']))
# convert model
final_model_path = process_checkpoint(trained_model_path,
publish_model_path)
# copy log
shutil.copy(
osp.join(models_root, model['config'], model['log_json_path']),
osp.join(model_publish_dir, f'{model_name}.log.json'))
shutil.copy(
osp.join(models_root, model['config'],
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, f'{model_name}.log'))
# copy config to guarantee reproducibility
config_path = model['config']
config_path = osp.join(
'configs',
config_path) if 'configs' not in config_path else config_path
target_cconfig_path = osp.split(config_path)[-1]
shutil.copy(config_path,
osp.join(model_publish_dir, target_cconfig_path))
model['model_path'] = final_model_path
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
print(f'Totally gathered {len(publish_model_infos)} models')
mmcv.dump(models, osp.join(models_out, 'model_info.json'))
if __name__ == '__main__':
main()