File size: 15,781 Bytes
c9019cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import sys
import time
import random
import string
import argparse
from tqdm import tqdm

import torch
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.optim as optim
import torch.utils.data
import numpy as np

from utils import CTCLabelConverter, CTCLabelConverterForBaiduWarpctc, AttnLabelConverter, Averager
from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset
from model import Model
from test import validation
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.val_imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.val_batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter
    bar = tqdm(total=opt.valInterval)

    while(True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        # if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0'
        bar.update(1)
        if (iteration + 1) % opt.valInterval == 0: # To see training progress, we also conduct validation when 'iteration == 0'
            bar.refresh()
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')
            bar.reset()

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--exp_name', help='Where to store logs and models')
    parser.add_argument('--db_type', choices=['lmdb', 'xmlmdb', 'raw'], help='type of database')
    parser.add_argument('--train_data', required=True, help='path to training dataset')
    parser.add_argument('--valid_data', required=True, help='path to validation dataset')
    parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
    parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
    parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
    parser.add_argument('--val_batch_size', type=int, default=192, help='input batch size')
    parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
    parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation')
    parser.add_argument('--saved_model', default='', help="path to model to continue training")
    parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
    parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)')
    parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
    parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
    parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
    parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
    parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
    parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode')
    """ Data processing """
    parser.add_argument('--select_data', type=str, default='MJ-ST',
                        help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
    parser.add_argument('--batch_ratio', type=str, default='0.5-0.5',
                        help='assign ratio for each selected data in the batch')
    parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
                        help='total data usage ratio, this ratio is multiplied to total number of data.')
    parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
    parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
    parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
    parser.add_argument('--val_imgW', type=int, default=100, help='the width of the input image')
    parser.add_argument('--rgb', action='store_true', help='use rgb input')
    parser.add_argument('--character', type=str,
                        default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
    parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
    parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
    parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
    """ Model Architecture """
    parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
    parser.add_argument('--FeatureExtraction', type=str, required=True,
                        help='FeatureExtraction stage. VGG|RCNN|ResNet')
    parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
    parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
    parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
    parser.add_argument('--input_channel', type=int, default=1,
                        help='the number of input channel of Feature extractor')
    parser.add_argument('--output_channel', type=int, default=512,
                        help='the number of output channel of Feature extractor')
    parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')

    opt = parser.parse_args()

    if not opt.exp_name:
        opt.exp_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-{opt.Prediction}'
        opt.exp_name += f'-Seed{opt.manualSeed}'
        # print(opt.exp_name)

    os.makedirs(f'./saved_models/{opt.exp_name}', exist_ok=True)

    """ vocab / character number configuration """
    if opt.sensitive:
        # opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
        opt.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

    """ Seed and GPU setting """
    # print("Random Seed: ", opt.manualSeed)
    random.seed(opt.manualSeed)
    np.random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    torch.cuda.manual_seed(opt.manualSeed)

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()
    # print('device count', opt.num_gpu)
    if opt.num_gpu > 1:
        print('------ Use multi-GPU setting ------')
        print('if you stuck too long time with multi-GPU setting, try to set --workers 0')
        # check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1
        opt.workers = opt.workers * opt.num_gpu
        opt.batch_size = opt.batch_size * opt.num_gpu
        opt.val_batch_size = opt.batch_size * opt.num_gpu

        """ previous version
        print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size)
        opt.batch_size = opt.batch_size * opt.num_gpu
        print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.')
        If you dont care about it, just commnet out these line.)
        opt.num_iter = int(opt.num_iter / opt.num_gpu)
        """

    train(opt)