File size: 15,781 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import os
import sys
import time
import random
import string
import argparse
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.optim as optim
import torch.utils.data
import numpy as np
from utils import CTCLabelConverter, CTCLabelConverterForBaiduWarpctc, AttnLabelConverter, Averager
from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset
from model import Model
from test import validation
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(opt):
""" dataset preparation """
if not opt.data_filtering_off:
print('Filtering the images containing characters which are not in opt.character')
print('Filtering the images whose label is longer than opt.batch_max_length')
# see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130
opt.select_data = opt.select_data.split('-')
opt.batch_ratio = opt.batch_ratio.split('-')
train_dataset = Batch_Balanced_Dataset(opt)
log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.val_imgW, keep_ratio_with_pad=opt.PAD)
valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=opt.val_batch_size,
shuffle=True, # 'True' to check training progress with validation function.
num_workers=int(opt.workers),
collate_fn=AlignCollate_valid, pin_memory=True)
log.write(valid_dataset_log)
print('-' * 80)
log.write('-' * 80 + '\n')
log.close()
""" model configuration """
if 'CTC' in opt.Prediction:
if opt.baiduCTC:
converter = CTCLabelConverterForBaiduWarpctc(opt.character)
else:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
# weight initialization
for name, param in model.named_parameters():
if 'localization_fc2' in name:
print(f'Skip {name} as it is already initialized')
continue
try:
if 'bias' in name:
init.constant_(param, 0.0)
elif 'weight' in name:
init.kaiming_normal_(param)
except Exception as e: # for batchnorm.
if 'weight' in name:
param.data.fill_(1)
continue
# data parallel for multi-GPU
model = torch.nn.DataParallel(model).to(device)
model.train()
if opt.saved_model != '':
print(f'loading pretrained model from {opt.saved_model}')
if opt.FT:
model.load_state_dict(torch.load(opt.saved_model), strict=False)
else:
model.load_state_dict(torch.load(opt.saved_model))
print("Model:")
print(model)
""" setup loss """
if 'CTC' in opt.Prediction:
if opt.baiduCTC:
# need to install warpctc. see our guideline.
from warpctc_pytorch import CTCLoss
criterion = CTCLoss()
else:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
# loss averager
loss_avg = Averager()
# filter that only require gradient decent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print('Trainable params num : ', sum(params_num))
# [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
# setup optimizer
if opt.adam:
optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
else:
optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
print("Optimizer:")
print(optimizer)
""" final options """
# print(opt)
with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
opt_log = '------------ Options -------------\n'
args = vars(opt)
for k, v in args.items():
opt_log += f'{str(k)}: {str(v)}\n'
opt_log += '---------------------------------------\n'
print(opt_log)
opt_file.write(opt_log)
""" start training """
start_iter = 0
if opt.saved_model != '':
try:
start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
print(f'continue to train, start_iter: {start_iter}')
except:
pass
start_time = time.time()
best_accuracy = -1
best_norm_ED = -1
iteration = start_iter
bar = tqdm(total=opt.valInterval)
while(True):
# train part
image_tensors, labels = train_dataset.get_batch()
image = image_tensors.to(device)
text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
batch_size = image.size(0)
if 'CTC' in opt.Prediction:
preds = model(image, text)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
if opt.baiduCTC:
preds = preds.permute(1, 0, 2) # to use CTCLoss format
cost = criterion(preds, text, preds_size, length) / batch_size
else:
preds = preds.log_softmax(2).permute(1, 0, 2)
cost = criterion(preds, text, preds_size, length)
else:
preds = model(image, text[:, :-1]) # align with Attention.forward
target = text[:, 1:] # without [GO] Symbol
cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))
model.zero_grad()
cost.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) # gradient clipping with 5 (Default)
optimizer.step()
loss_avg.add(cost)
# validation part
# if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0'
bar.update(1)
if (iteration + 1) % opt.valInterval == 0: # To see training progress, we also conduct validation when 'iteration == 0'
bar.refresh()
elapsed_time = time.time() - start_time
# for log
with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log:
model.eval()
with torch.no_grad():
valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
model, criterion, valid_loader, converter, opt)
model.train()
# training loss and validation loss
loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
loss_avg.reset()
current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
# keep best accuracy model (on valid dataset)
if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_accuracy.pth')
if current_norm_ED > best_norm_ED:
best_norm_ED = current_norm_ED
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'
loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
print(loss_model_log)
log.write(loss_model_log + '\n')
# show some predicted results
dashed_line = '-' * 80
head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
if 'Attn' in opt.Prediction:
gt = gt[:gt.find('[s]')]
pred = pred[:pred.find('[s]')]
predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
predicted_result_log += f'{dashed_line}'
print(predicted_result_log)
log.write(predicted_result_log + '\n')
bar.reset()
# save model per 1e+5 iter.
if (iteration + 1) % 1e+5 == 0:
torch.save(
model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')
if (iteration + 1) == opt.num_iter:
print('end the training')
sys.exit()
iteration += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', help='Where to store logs and models')
parser.add_argument('--db_type', choices=['lmdb', 'xmlmdb', 'raw'], help='type of database')
parser.add_argument('--train_data', required=True, help='path to training dataset')
parser.add_argument('--valid_data', required=True, help='path to validation dataset')
parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--val_batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation')
parser.add_argument('--saved_model', default='', help="path to model to continue training")
parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)')
parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode')
""" Data processing """
parser.add_argument('--select_data', type=str, default='MJ-ST',
help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
parser.add_argument('--batch_ratio', type=str, default='0.5-0.5',
help='assign ratio for each selected data in the batch')
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
help='total data usage ratio, this ratio is multiplied to total number of data.')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--val_imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str,
default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True,
help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1,
help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
if not opt.exp_name:
opt.exp_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-{opt.Prediction}'
opt.exp_name += f'-Seed{opt.manualSeed}'
# print(opt.exp_name)
os.makedirs(f'./saved_models/{opt.exp_name}', exist_ok=True)
""" vocab / character number configuration """
if opt.sensitive:
# opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
""" Seed and GPU setting """
# print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed(opt.manualSeed)
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
# print('device count', opt.num_gpu)
if opt.num_gpu > 1:
print('------ Use multi-GPU setting ------')
print('if you stuck too long time with multi-GPU setting, try to set --workers 0')
# check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1
opt.workers = opt.workers * opt.num_gpu
opt.batch_size = opt.batch_size * opt.num_gpu
opt.val_batch_size = opt.batch_size * opt.num_gpu
""" previous version
print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size)
opt.batch_size = opt.batch_size * opt.num_gpu
print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.')
If you dont care about it, just commnet out these line.)
opt.num_iter = int(opt.num_iter / opt.num_gpu)
"""
train(opt)
|