File size: 8,064 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os.path as osp
from argparse import ArgumentParser
import mmcv
import numpy as np
def print_coco_results(results):
def _print(result, ap=1, iouThr=None, areaRng='all', maxDets=100):
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '0.50:0.95' \
if iouThr is None else f'{iouThr:0.2f}'
iStr = f' {titleStr:<18} {typeStr} @[ IoU={iouStr:<9} | '
iStr += f'area={areaRng:>6s} | maxDets={maxDets:>3d} ] = {result:0.3f}'
print(iStr)
stats = np.zeros((12, ))
stats[0] = _print(results[0], 1)
stats[1] = _print(results[1], 1, iouThr=.5)
stats[2] = _print(results[2], 1, iouThr=.75)
stats[3] = _print(results[3], 1, areaRng='small')
stats[4] = _print(results[4], 1, areaRng='medium')
stats[5] = _print(results[5], 1, areaRng='large')
stats[6] = _print(results[6], 0, maxDets=1)
stats[7] = _print(results[7], 0, maxDets=10)
stats[8] = _print(results[8], 0)
stats[9] = _print(results[9], 0, areaRng='small')
stats[10] = _print(results[10], 0, areaRng='medium')
stats[11] = _print(results[11], 0, areaRng='large')
def get_coco_style_results(filename,
task='bbox',
metric=None,
prints='mPC',
aggregate='benchmark'):
assert aggregate in ['benchmark', 'all']
if prints == 'all':
prints = ['P', 'mPC', 'rPC']
elif isinstance(prints, str):
prints = [prints]
for p in prints:
assert p in ['P', 'mPC', 'rPC']
if metric is None:
metrics = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
'ARs', 'ARm', 'ARl'
]
elif isinstance(metric, list):
metrics = metric
else:
metrics = [metric]
for metric_name in metrics:
assert metric_name in [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
'ARs', 'ARm', 'ARl'
]
eval_output = mmcv.load(filename)
num_distortions = len(list(eval_output.keys()))
results = np.zeros((num_distortions, 6, len(metrics)), dtype='float32')
for corr_i, distortion in enumerate(eval_output):
for severity in eval_output[distortion]:
for metric_j, metric_name in enumerate(metrics):
mAP = eval_output[distortion][severity][task][metric_name]
results[corr_i, severity, metric_j] = mAP
P = results[0, 0, :]
if aggregate == 'benchmark':
mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
else:
mPC = np.mean(results[:, 1:, :], axis=(0, 1))
rPC = mPC / P
print(f'\nmodel: {osp.basename(filename)}')
if metric is None:
if 'P' in prints:
print(f'Performance on Clean Data [P] ({task})')
print_coco_results(P)
if 'mPC' in prints:
print(f'Mean Performance under Corruption [mPC] ({task})')
print_coco_results(mPC)
if 'rPC' in prints:
print(f'Relative Performance under Corruption [rPC] ({task})')
print_coco_results(rPC)
else:
if 'P' in prints:
print(f'Performance on Clean Data [P] ({task})')
for metric_i, metric_name in enumerate(metrics):
print(f'{metric_name:5} = {P[metric_i]:0.3f}')
if 'mPC' in prints:
print(f'Mean Performance under Corruption [mPC] ({task})')
for metric_i, metric_name in enumerate(metrics):
print(f'{metric_name:5} = {mPC[metric_i]:0.3f}')
if 'rPC' in prints:
print(f'Relative Performance under Corruption [rPC] ({task})')
for metric_i, metric_name in enumerate(metrics):
print(f'{metric_name:5} => {rPC[metric_i] * 100:0.1f} %')
return results
def get_voc_style_results(filename, prints='mPC', aggregate='benchmark'):
assert aggregate in ['benchmark', 'all']
if prints == 'all':
prints = ['P', 'mPC', 'rPC']
elif isinstance(prints, str):
prints = [prints]
for p in prints:
assert p in ['P', 'mPC', 'rPC']
eval_output = mmcv.load(filename)
num_distortions = len(list(eval_output.keys()))
results = np.zeros((num_distortions, 6, 20), dtype='float32')
for i, distortion in enumerate(eval_output):
for severity in eval_output[distortion]:
mAP = [
eval_output[distortion][severity][j]['ap']
for j in range(len(eval_output[distortion][severity]))
]
results[i, severity, :] = mAP
P = results[0, 0, :]
if aggregate == 'benchmark':
mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
else:
mPC = np.mean(results[:, 1:, :], axis=(0, 1))
rPC = mPC / P
print(f'\nmodel: {osp.basename(filename)}')
if 'P' in prints:
print(f'Performance on Clean Data [P] in AP50 = {np.mean(P):0.3f}')
if 'mPC' in prints:
print('Mean Performance under Corruption [mPC] in AP50 = '
f'{np.mean(mPC):0.3f}')
if 'rPC' in prints:
print('Relative Performance under Corruption [rPC] in % = '
f'{np.mean(rPC) * 100:0.1f}')
return np.mean(results, axis=2, keepdims=True)
def get_results(filename,
dataset='coco',
task='bbox',
metric=None,
prints='mPC',
aggregate='benchmark'):
assert dataset in ['coco', 'voc', 'cityscapes']
if dataset in ['coco', 'cityscapes']:
results = get_coco_style_results(
filename,
task=task,
metric=metric,
prints=prints,
aggregate=aggregate)
elif dataset == 'voc':
if task != 'bbox':
print('Only bbox analysis is supported for Pascal VOC')
print('Will report bbox results\n')
if metric not in [None, ['AP'], ['AP50']]:
print('Only the AP50 metric is supported for Pascal VOC')
print('Will report AP50 metric\n')
results = get_voc_style_results(
filename, prints=prints, aggregate=aggregate)
return results
def get_distortions_from_file(filename):
eval_output = mmcv.load(filename)
return get_distortions_from_results(eval_output)
def get_distortions_from_results(eval_output):
distortions = []
for i, distortion in enumerate(eval_output):
distortions.append(distortion.replace('_', ' '))
return distortions
def main():
parser = ArgumentParser(description='Corruption Result Analysis')
parser.add_argument('filename', help='result file path')
parser.add_argument(
'--dataset',
type=str,
choices=['coco', 'voc', 'cityscapes'],
default='coco',
help='dataset type')
parser.add_argument(
'--task',
type=str,
nargs='+',
choices=['bbox', 'segm'],
default=['bbox'],
help='task to report')
parser.add_argument(
'--metric',
nargs='+',
choices=[
None, 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10',
'AR100', 'ARs', 'ARm', 'ARl'
],
default=None,
help='metric to report')
parser.add_argument(
'--prints',
type=str,
nargs='+',
choices=['P', 'mPC', 'rPC'],
default='mPC',
help='corruption benchmark metric to print')
parser.add_argument(
'--aggregate',
type=str,
choices=['all', 'benchmark'],
default='benchmark',
help='aggregate all results or only those \
for benchmark corruptions')
args = parser.parse_args()
for task in args.task:
get_results(
args.filename,
dataset=args.dataset,
task=task,
metric=args.metric,
prints=args.prints,
aggregate=args.aggregate)
if __name__ == '__main__':
main()
|