File size: 13,123 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
Apart from training/testing scripts, We provide lots of useful tools under the
`tools/` directory.
## Log Analysis
`tools/analysis_tools/analyze_logs.py` plots loss/mAP curves given a training
log file. Run `pip install seaborn` first to install the dependency.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
```
![loss curve image](../resources/loss_curve.png)
Examples:
- Plot the classification loss of some run.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
```
- Plot the classification and regression loss of some run, and save the figure to a pdf.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf
```
- Compare the bbox mAP of two runs in the same figure.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2
```
- Compute the average training speed.
```shell
python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]
```
The output is expected to be like the following.
```text
-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter
```
## Result Analysis
`tools/analysis_tools/analyze_results.py` calculates single image mAP and saves or shows the topk images with the highest and lowest scores based on prediction results.
**Usage**
```shell
python tools/analysis_tools/analyze_results.py \
${CONFIG} \
${PREDICTION_PATH} \
${SHOW_DIR} \
[--show] \
[--wait-time ${WAIT_TIME}] \
[--topk ${TOPK}] \
[--show-score-thr ${SHOW_SCORE_THR}] \
[--cfg-options ${CFG_OPTIONS}]
```
Description of all arguments:
- `config` : The path of a model config file.
- `prediction_path`: Output result file in pickle format from `tools/test.py`
- `show_dir`: Directory where painted GT and detection images will be saved
- `--show`:Determines whether to show painted images, If not specified, it will be set to `False`
- `--wait-time`: The interval of show (s), 0 is block
- `--topk`: The number of saved images that have the highest and lowest `topk` scores after sorting. If not specified, it will be set to `20`.
- `--show-score-thr`: Show score threshold. If not specified, it will be set to `0`.
- `--cfg-options`: If specified, the key-value pair optional cfg will be merged into config file
**Examples**:
Assume that you have got result file in pickle format from `tools/test.py` in the path './result.pkl'.
1. Test Faster R-CNN and visualize the results, save images to the directory `results/`
```shell
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
result.pkl \
results \
--show
```
2. Test Faster R-CNN and specified topk to 50, save images to the directory `results/`
```shell
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
result.pkl \
results \
--topk 50
```
3. If you want to filter the low score prediction results, you can specify the `show-score-thr` parameter
```shell
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
result.pkl \
results \
--show-score-thr 0.3
```
## Visualization
### Visualize Datasets
`tools/misc/browse_dataset.py` helps the user to browse a detection dataset (both
images and bounding box annotations) visually, or save the image to a
designated directory.
```shell
python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]
```
### Visualize Models
First, convert the model to ONNX as described
[here](#convert-mmdetection-model-to-onnx-experimental).
Note that currently only RetinaNet is supported, support for other models
will be coming in later versions.
The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron).
### Visualize Predictions
If you need a lightweight GUI for visualizing the detection results, you can refer [DetVisGUI project](https://github.com/Chien-Hung/DetVisGUI/tree/mmdetection).
## Error Analysis
`tools/analysis_tools/coco_error_analysis.py` analyzes COCO results per category and by
different criterion. It can also make a plot to provide useful information.
```shell
python tools/analysis_tools/coco_error_analysis.py ${RESULT} ${OUT_DIR} [-h] [--ann ${ANN}] [--types ${TYPES[TYPES...]}]
```
Example:
Assume that you have got [Mask R-CNN checkpoint file](http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) in the path 'checkpoint'. For other checkpoints, please refer to our [model zoo](./model_zoo.md). You can use the following command to get the results bbox and segmentation json file.
```shell
# out: results.bbox.json and results.segm.json
python tools/test.py \
configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
checkpoint/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
--format-only \
--options "jsonfile_prefix=./results"
```
1. Get COCO bbox error results per category , save analyze result images to the directory `results/`
```shell
python tools/analysis_tools/coco_error_analysis.py \
results.bbox.json \
results \
--ann=data/coco/annotations/instances_val2017.json \
```
2. Get COCO segmentation error results per category , save analyze result images to the directory `results/`
```shell
python tools/analysis_tools/coco_error_analysis.py \
results.segm.json \
results \
--ann=data/coco/annotations/instances_val2017.json \
--types='segm'
```
## Model Serving
In order to serve an `MMDetection` model with [`TorchServe`](https://pytorch.org/serve/), you can follow the steps:
### 1. Convert model from MMDetection to TorchServe
```shell
python tools/deployment/mmdet2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}
```
***Note**: ${MODEL_STORE} needs to be an absolute path to a folder.
### 2. Build `mmdet-serve` docker image
```shell
docker build -t mmdet-serve:latest docker/serve/
```
### 3. Run `mmdet-serve`
Check the official docs for [running TorchServe with docker](https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment).
In order to run in GPU, you need to install [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). You can omit the `--gpus` argument in order to run in CPU.
Example:
```shell
docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet-serve:latest
```
[Read the docs](https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md) about the Inference (8080), Management (8081) and Metrics (8082) APis
### 4. Test deployment
```shell
curl -O curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.jpg
curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg
```
You should obtain a respose similar to:
```json
[
{
"dog": [
402.9117736816406,
124.19664001464844,
571.7910766601562,
292.6463623046875
],
"score": 0.9561963081359863
},
{
"dog": [
293.90057373046875,
196.2908477783203,
417.4869079589844,
286.2522277832031
],
"score": 0.9179860353469849
},
{
"dog": [
202.178466796875,
86.3709487915039,
311.9863586425781,
276.28411865234375
],
"score": 0.8933767080307007
}
]
```
## Model Complexity
`tools/analysis_tools/get_flops.py` is a script adapted from [flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch) to compute the FLOPs and params of a given model.
```shell
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
```
You will get the results like this.
```text
==============================
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
==============================
```
**Note**: This tool is still experimental and we do not guarantee that the
number is absolutely correct. You may well use the result for simple
comparisons, but double check it before you adopt it in technical reports or papers.
1. FLOPs are related to the input shape while parameters are not. The default
input shape is (1, 3, 1280, 800).
2. Some operators are not counted into FLOPs like GN and custom operators. Refer to [`mmcv.cnn.get_model_complexity_info()`](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py) for details.
3. The FLOPs of two-stage detectors is dependent on the number of proposals.
## Model conversion
### MMDetection model to ONNX (experimental)
We provide a script to convert model to [ONNX](https://github.com/onnx/onnx) format. We also support comparing the output results between Pytorch and ONNX model for verification.
```shell
python tools/deployment/pytorch2onnx.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --output_file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
```
**Note**: This tool is still experimental. Some customized operators are not supported for now. For a detailed description of the usage and the list of supported models, please refer to [pytorch2onnx](tutorials/pytorch2onnx.md).
### MMDetection 1.x model to MMDetection 2.x
`tools/model_converters/upgrade_model_version.py` upgrades a previous MMDetection checkpoint
to the new version. Note that this script is not guaranteed to work as some
breaking changes are introduced in the new version. It is recommended to
directly use the new checkpoints.
```shell
python tools/model_converters/upgrade_model_version.py ${IN_FILE} ${OUT_FILE} [-h] [--num-classes NUM_CLASSES]
```
### RegNet model to MMDetection
`tools/model_converters/regnet2mmdet.py` convert keys in pycls pretrained RegNet models to
MMDetection style.
```shell
python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]
```
### Detectron ResNet to Pytorch
`tools/model_converters/detectron2pytorch.py` converts keys in the original detectron pretrained
ResNet models to PyTorch style.
```shell
python tools/model_converters/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]
```
### Prepare a model for publishing
`tools/model_converters/publish_model.py` helps users to prepare their model for publishing.
Before you upload a model to AWS, you may want to
1. convert model weights to CPU tensors
2. delete the optimizer states and
3. compute the hash of the checkpoint file and append the hash id to the
filename.
```shell
python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
```
E.g.,
```shell
python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth
```
The final output filename will be `faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth`.
## Dataset Conversion
`tools/data_converters/` contains tools to convert the Cityscapes dataset
and Pascal VOC dataset to the COCO format.
```shell
python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir ${IMG_DIR}] [--gt-dir ${GT_DIR}] [-o ${OUT_DIR}] [--nproc ${NPROC}]
python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]
```
## Robust Detection Benchmark
`tools/analysis_tools/test_robustness.py` and`tools/analysis_tools/robustness_eval.py` helps users to evaluate model robustness. The core idea comes from [Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming](https://arxiv.org/abs/1907.07484). For more information how to evaluate models on corrupted images and results for a set of standard models please refer to [robustness_benchmarking.md](robustness_benchmarking.md).
## Miscellaneous
### Evaluating a metric
`tools/analysis_tools/eval_metric.py` evaluates certain metrics of a pkl result file
according to a config file.
```shell
python tools/analysis_tools/eval_metric.py ${CONFIG} ${PKL_RESULTS} [-h] [--format-only] [--eval ${EVAL[EVAL ...]}]
[--cfg-options ${CFG_OPTIONS [CFG_OPTIONS ...]}]
[--eval-options ${EVAL_OPTIONS [EVAL_OPTIONS ...]}]
```
### Print the entire config
`tools/misc/print_config.py` prints the whole config verbatim, expanding all its
imports.
```shell
python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
```
|