File size: 13,123 Bytes
c9019cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
Apart from training/testing scripts, We provide lots of useful tools under the
 `tools/` directory.

## Log Analysis

`tools/analysis_tools/analyze_logs.py` plots loss/mAP curves given a training
 log file. Run `pip install seaborn` first to install the dependency.

 ```shell
python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
 ```

![loss curve image](../resources/loss_curve.png)

Examples:

- Plot the classification loss of some run.

    ```shell
    python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
    ```

- Plot the classification and regression loss of some run, and save the figure to a pdf.

    ```shell
    python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf
    ```

- Compare the bbox mAP of two runs in the same figure.

    ```shell
    python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2
    ```

- Compute the average training speed.

    ```shell
    python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]
    ```

    The output is expected to be like the following.

    ```text
    -----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
    slowest epoch 11, average time is 1.2024
    fastest epoch 1, average time is 1.1909
    time std over epochs is 0.0028
    average iter time: 1.1959 s/iter
    ```

## Result Analysis

`tools/analysis_tools/analyze_results.py` calculates single image mAP and saves or shows the topk images with the highest and lowest scores based on prediction results.

**Usage**

```shell
python tools/analysis_tools/analyze_results.py \
      ${CONFIG} \
      ${PREDICTION_PATH} \
      ${SHOW_DIR} \
      [--show] \
      [--wait-time ${WAIT_TIME}] \
      [--topk ${TOPK}] \
      [--show-score-thr ${SHOW_SCORE_THR}] \
      [--cfg-options ${CFG_OPTIONS}]
```

Description of all arguments:

- `config` : The path of a model config file.
- `prediction_path`:  Output result file in pickle format from `tools/test.py`
- `show_dir`: Directory where painted GT and detection images will be saved
- `--show`:Determines whether to show painted images, If not specified, it will be set to `False`
- `--wait-time`: The interval of show (s), 0 is block
- `--topk`: The number of saved images that have the highest and lowest `topk` scores after sorting. If not specified, it will be set to `20`.
- `--show-score-thr`:  Show score threshold. If not specified, it will be set to `0`.
- `--cfg-options`: If specified, the key-value pair optional cfg will be merged into config file

**Examples**:

Assume that you have got result file in pickle format from `tools/test.py`  in the path './result.pkl'.

1. Test Faster R-CNN and visualize the results, save images to the directory `results/`

```shell
python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --show
```

2. Test Faster R-CNN and specified topk to 50, save images to the directory `results/`

```shell
python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --topk 50
```

3. If you want to filter the low score prediction results, you can specify the `show-score-thr` parameter

```shell
python tools/analysis_tools/analyze_results.py \
       configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
       result.pkl \
       results \
       --show-score-thr 0.3
```

## Visualization

### Visualize Datasets

`tools/misc/browse_dataset.py` helps the user to browse a detection dataset (both
 images and bounding box annotations) visually, or save the image to a
  designated directory.

```shell
python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]
```

### Visualize Models

First, convert the model to ONNX as described
[here](#convert-mmdetection-model-to-onnx-experimental).
Note that currently only RetinaNet is supported, support for other models
 will be coming in later versions.
The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron).

### Visualize Predictions

If you need a lightweight GUI for visualizing the detection results, you can refer [DetVisGUI project](https://github.com/Chien-Hung/DetVisGUI/tree/mmdetection).

## Error Analysis

`tools/analysis_tools/coco_error_analysis.py` analyzes COCO results per category and by
 different criterion. It can also make a plot to provide useful information.

```shell
python tools/analysis_tools/coco_error_analysis.py ${RESULT} ${OUT_DIR} [-h] [--ann ${ANN}] [--types ${TYPES[TYPES...]}]
```

Example:

Assume that you have got [Mask R-CNN checkpoint file](http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) in the path 'checkpoint'. For other checkpoints, please refer to our [model zoo](./model_zoo.md). You can use the following command to get the results bbox and segmentation json file.

```shell
# out: results.bbox.json and results.segm.json
python tools/test.py \
       configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
       checkpoint/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
       --format-only \
       --options "jsonfile_prefix=./results"
```

1. Get COCO bbox error results per category , save analyze result images to the directory `results/`

```shell
python tools/analysis_tools/coco_error_analysis.py \
       results.bbox.json \
       results \
       --ann=data/coco/annotations/instances_val2017.json \
```

2. Get COCO segmentation error results per category , save analyze result images to the directory `results/`

```shell
python tools/analysis_tools/coco_error_analysis.py \
       results.segm.json \
       results \
       --ann=data/coco/annotations/instances_val2017.json \
       --types='segm'
```

## Model Serving

In order to serve an `MMDetection` model with [`TorchServe`](https://pytorch.org/serve/), you can follow the steps:

### 1. Convert model from MMDetection to TorchServe

```shell
python tools/deployment/mmdet2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}
```

***Note**: ${MODEL_STORE} needs to be an absolute path to a folder.

### 2. Build `mmdet-serve` docker image

```shell
docker build -t mmdet-serve:latest docker/serve/
```

### 3. Run `mmdet-serve`

Check the official docs for [running TorchServe with docker](https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment).

In order to run in GPU, you need to install [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). You can omit the `--gpus` argument in order to run in CPU.

Example:

```shell
docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \
--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
mmdet-serve:latest
```

[Read the docs](https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md) about the Inference (8080), Management (8081) and Metrics (8082) APis

### 4. Test deployment

```shell
curl -O curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.jpg
curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg
```

You should obtain a respose similar to:

```json
[
  {
    "dog": [
      402.9117736816406,
      124.19664001464844,
      571.7910766601562,
      292.6463623046875
    ],
    "score": 0.9561963081359863
  },
  {
    "dog": [
      293.90057373046875,
      196.2908477783203,
      417.4869079589844,
      286.2522277832031
    ],
    "score": 0.9179860353469849
  },
  {
    "dog": [
      202.178466796875,
      86.3709487915039,
      311.9863586425781,
      276.28411865234375
    ],
    "score": 0.8933767080307007
  }
]
```

## Model Complexity

`tools/analysis_tools/get_flops.py` is a script adapted from [flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch) to compute the FLOPs and params of a given model.

```shell
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
```

You will get the results like this.

```text
==============================
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
==============================
```

**Note**: This tool is still experimental and we do not guarantee that the
 number is absolutely correct. You may well use the result for simple
  comparisons, but double check it before you adopt it in technical reports or papers.

1. FLOPs are related to the input shape while parameters are not. The default
 input shape is (1, 3, 1280, 800).
2. Some operators are not counted into FLOPs like GN and custom operators. Refer to [`mmcv.cnn.get_model_complexity_info()`](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py) for details.
3. The FLOPs of two-stage detectors is dependent on the number of proposals.

## Model conversion

### MMDetection model to ONNX (experimental)

We provide a script to convert model to [ONNX](https://github.com/onnx/onnx) format. We also support comparing the output results between Pytorch and ONNX model for verification.

```shell
python tools/deployment/pytorch2onnx.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --output_file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
```

**Note**: This tool is still experimental. Some customized operators are not supported for now. For a detailed description of the usage and the list of supported models, please refer to [pytorch2onnx](tutorials/pytorch2onnx.md).

### MMDetection 1.x model to MMDetection 2.x

`tools/model_converters/upgrade_model_version.py` upgrades a previous MMDetection checkpoint
 to the new version. Note that this script is not guaranteed to work as some
  breaking changes are introduced in the new version. It is recommended to
   directly use the new checkpoints.

```shell
python tools/model_converters/upgrade_model_version.py ${IN_FILE} ${OUT_FILE} [-h] [--num-classes NUM_CLASSES]
```

### RegNet model to MMDetection

`tools/model_converters/regnet2mmdet.py` convert keys in pycls pretrained RegNet models to
 MMDetection style.

```shell
python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]
```

### Detectron ResNet to Pytorch

`tools/model_converters/detectron2pytorch.py` converts keys in the original detectron pretrained
 ResNet models to PyTorch style.

```shell
python tools/model_converters/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]
```

### Prepare a model for publishing

`tools/model_converters/publish_model.py` helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to

1. convert model weights to CPU tensors
2. delete the optimizer states and
3. compute the hash of the checkpoint file and append the hash id to the
 filename.

```shell
python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
```

E.g.,

```shell
python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth
```

The final output filename will be `faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth`.

## Dataset Conversion

`tools/data_converters/` contains tools to convert the Cityscapes dataset
 and Pascal VOC dataset to the COCO format.

```shell
python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir ${IMG_DIR}] [--gt-dir ${GT_DIR}] [-o ${OUT_DIR}] [--nproc ${NPROC}]
python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]
```

## Robust Detection Benchmark

`tools/analysis_tools/test_robustness.py` and`tools/analysis_tools/robustness_eval.py`  helps users to evaluate model robustness. The core idea comes from [Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming](https://arxiv.org/abs/1907.07484). For more information how to evaluate models on corrupted images and results for a set of standard models please refer to [robustness_benchmarking.md](robustness_benchmarking.md).

## Miscellaneous

### Evaluating a metric

`tools/analysis_tools/eval_metric.py` evaluates certain metrics of a pkl result file
 according to a config file.

```shell
python tools/analysis_tools/eval_metric.py ${CONFIG} ${PKL_RESULTS} [-h] [--format-only] [--eval ${EVAL[EVAL ...]}]
                      [--cfg-options ${CFG_OPTIONS [CFG_OPTIONS ...]}]
                      [--eval-options ${EVAL_OPTIONS [EVAL_OPTIONS ...]}]
```

### Print the entire config

`tools/misc/print_config.py` prints the whole config verbatim, expanding all its
 imports.

```shell
python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
```