File size: 9,895 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
This software was developed by the National Diet Library under contract to Morpho AI Solutions, Inc.
This software is largely based on the following repositories.
- [open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection)
The following files are also based on [eqlv2](https://github.com/tztztztztz/eqlv2)
- [mmdet/core/post_processing/bbox_nms.py](mmdet/core/post_processing/bbox_nms.py)
- [mmdet/core/post_processing/merge_augs.py](mmdet/core/post_processing/merge_augs.py)
- [mmdet/datasets/builder.py](mmdet/datasets/builder.py)
- [mmdet/datasets/class_balance_dataset_wrapper.py](mmdet/datasets/class_balance_dataset_wrapper.py)
- [mmdet/datasets/max_iter_dataset_wrapper.py](mmdet/datasets/max_iter_dataset_wrapper.py)
- [mmdet/models/losses/eql.py](mmdet/models/losses/eql.py)
- [mmdet/models/losses/eqlv2.py](mmdet/models/losses/eqlv2.py)
- [mmdet/models/losses/group_softmax.py](mmdet/models/losses/group_softmax.py)
The newly developed portion of this program is released by the National Diet Library under a CC BY 4.0 license. For more information, see [LICENSE](./LICENSE)
.
<div align="center">
<img src="resources/mmdet-logo.png" width="600"/>
</div>
**News**: We released the technical report on [ArXiv](https://arxiv.org/abs/1906.07155).
Documentation: https://mmdetection.readthedocs.io/
## Introduction
English | [简体中文](README_zh-CN.md)
MMDetection is an open source object detection toolbox based on PyTorch. It is
a part of the [OpenMMLab](https://openmmlab.com/) project.
The master branch works with **PyTorch 1.3+**.
The old v1.x branch works with PyTorch 1.1 to 1.4, but v2.0 is strongly recommended for faster speed, higher performance, better design and more friendly usage.
![demo image](resources/coco_test_12510.jpg)
### Major features
- **Modular Design**
We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules.
- **Support of multiple frameworks out of box**
The toolbox directly supports popular and contemporary detection frameworks, *e.g.* Faster RCNN, Mask RCNN, RetinaNet, etc.
- **High efficiency**
All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet).
- **State of the art**
The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward.
Apart from MMDetection, we also released a library [mmcv](https://github.com/open-mmlab/mmcv) for computer vision research, which is heavily depended on by this toolbox.
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Changelog
v2.11.0 was released in 01/04/2021.
Please refer to [changelog.md](docs/changelog.md) for details and release history.
A comparison between v1.x and v2.0 codebases can be found in [compatibility.md](docs/compatibility.md).
## Benchmark and model zoo
Results and models are available in the [model zoo](docs/model_zoo.md).
Supported backbones:
- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
- [x] VGG (ICLR'2015)
- [x] HRNet (CVPR'2019)
- [x] RegNet (CVPR'2020)
- [x] Res2Net (TPAMI'2020)
- [x] ResNeSt (ArXiv'2020)
Supported methods:
- [x] [RPN (NeurIPS'2015)](configs/rpn)
- [x] [Fast R-CNN (ICCV'2015)](configs/fast_rcnn)
- [x] [Faster R-CNN (NeurIPS'2015)](configs/faster_rcnn)
- [x] [Mask R-CNN (ICCV'2017)](configs/mask_rcnn)
- [x] [Cascade R-CNN (CVPR'2018)](configs/cascade_rcnn)
- [x] [Cascade Mask R-CNN (CVPR'2018)](configs/cascade_rcnn)
- [x] [SSD (ECCV'2016)](configs/ssd)
- [x] [RetinaNet (ICCV'2017)](configs/retinanet)
- [x] [GHM (AAAI'2019)](configs/ghm)
- [x] [Mask Scoring R-CNN (CVPR'2019)](configs/ms_rcnn)
- [x] [Double-Head R-CNN (CVPR'2020)](configs/double_heads)
- [x] [Hybrid Task Cascade (CVPR'2019)](configs/htc)
- [x] [Libra R-CNN (CVPR'2019)](configs/libra_rcnn)
- [x] [Guided Anchoring (CVPR'2019)](configs/guided_anchoring)
- [x] [FCOS (ICCV'2019)](configs/fcos)
- [x] [RepPoints (ICCV'2019)](configs/reppoints)
- [x] [Foveabox (TIP'2020)](configs/foveabox)
- [x] [FreeAnchor (NeurIPS'2019)](configs/free_anchor)
- [x] [NAS-FPN (CVPR'2019)](configs/nas_fpn)
- [x] [ATSS (CVPR'2020)](configs/atss)
- [x] [FSAF (CVPR'2019)](configs/fsaf)
- [x] [PAFPN (CVPR'2018)](configs/pafpn)
- [x] [Dynamic R-CNN (ECCV'2020)](configs/dynamic_rcnn)
- [x] [PointRend (CVPR'2020)](configs/point_rend)
- [x] [CARAFE (ICCV'2019)](configs/carafe/README.md)
- [x] [DCNv2 (CVPR'2019)](configs/dcn/README.md)
- [x] [Group Normalization (ECCV'2018)](configs/gn/README.md)
- [x] [Weight Standardization (ArXiv'2019)](configs/gn+ws/README.md)
- [x] [OHEM (CVPR'2016)](configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py)
- [x] [Soft-NMS (ICCV'2017)](configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py)
- [x] [Generalized Attention (ICCV'2019)](configs/empirical_attention/README.md)
- [x] [GCNet (ICCVW'2019)](configs/gcnet/README.md)
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16/README.md)
- [x] [InstaBoost (ICCV'2019)](configs/instaboost/README.md)
- [x] [GRoIE (ICPR'2020)](configs/groie/README.md)
- [x] [DetectoRS (ArXix'2020)](configs/detectors/README.md)
- [x] [Generalized Focal Loss (NeurIPS'2020)](configs/gfl/README.md)
- [x] [CornerNet (ECCV'2018)](configs/cornernet/README.md)
- [x] [Side-Aware Boundary Localization (ECCV'2020)](configs/sabl/README.md)
- [x] [YOLOv3 (ArXiv'2018)](configs/yolo/README.md)
- [x] [PAA (ECCV'2020)](configs/paa/README.md)
- [x] [YOLACT (ICCV'2019)](configs/yolact/README.md)
- [x] [CentripetalNet (CVPR'2020)](configs/centripetalnet/README.md)
- [x] [VFNet (ArXix'2020)](configs/vfnet/README.md)
- [x] [DETR (ECCV'2020)](configs/detr/README.md)
- [x] [Deformable DETR (ICLR'2021)](configs/deformable_detr/README.md)
- [x] [CascadeRPN (NeurIPS'2019)](configs/cascade_rpn/README.md)
- [x] [SCNet (AAAI'2021)](configs/scnet/README.md)
- [x] [AutoAssign (ArXix'2020)](configs/autoassign/README.md)
- [x] [YOLOF (CVPR'2021)](configs/yolof/README.md)
Some other methods are also supported in [projects using MMDetection](./docs/projects.md).
## Installation
Please refer to [get_started.md](docs/get_started.md) for installation.
## Getting Started
Please see [get_started.md](docs/get_started.md) for the basic usage of MMDetection.
We provide [colab tutorial](demo/MMDet_Tutorial.ipynb), and full guidance for quick run [with existing dataset](docs/1_exist_data_model.md) and [with new dataset](docs/2_new_data_model.md) for beginners.
There are also tutorials for [finetuning models](docs/tutorials/finetune.md), [adding new dataset](docs/tutorials/new_dataset.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing models](docs/tutorials/customize_models.md), [customizing runtime settings](docs/tutorials/customize_runtime.md) and [useful tools](docs/useful_tools.md).
Please refer to [FAQ](docs/faq.md) for frequently asked questions.
## Contributing
We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
## Acknowledgement
MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.
## Citation
If you use this toolbox or benchmark in your research, please cite this project.
```
@article{mmdetection,
title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
journal= {arXiv preprint arXiv:1906.07155},
year={2019}
}
```
## Projects in OpenMMLab
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMOCR](https://github.com/open-mmlab/mmocr): A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
|