#include "cuda_runtime.h" #include "curand.h" #include "cublas_v2.h" extern "C" { #include "convolutional_layer.h" #include "batchnorm_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" #include "col2im.h" #include "utils.h" #include "cuda.h" } __global__ void binarize_kernel(float *x, int n, float *binary) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (i >= n) return; binary[i] = (x[i] >= 0) ? 1 : -1; } void binarize_gpu(float *x, int n, float *binary) { binarize_kernel<<>>(x, n, binary); check_error(cudaPeekAtLastError()); } __global__ void binarize_input_kernel(float *input, int n, int size, float *binary) { int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (s >= size) return; int i = 0; float mean = 0; for(i = 0; i < n; ++i){ mean += fabsf(input[i*size + s]); } mean = mean / n; for(i = 0; i < n; ++i){ binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; } } void binarize_input_gpu(float *input, int n, int size, float *binary) { binarize_input_kernel<<>>(input, n, size, binary); check_error(cudaPeekAtLastError()); } __global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary) { int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (f >= n) return; int i = 0; float mean = 0; for(i = 0; i < size; ++i){ mean += fabsf(weights[f*size + i]); } mean = mean / size; for(i = 0; i < size; ++i){ binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; //binary[f*size + i] = weights[f*size + i]; } } void binarize_weights_gpu(float *weights, int n, int size, float *binary) { binarize_weights_kernel<<>>(weights, n, size, binary); check_error(cudaPeekAtLastError()); } void forward_convolutional_layer_gpu(convolutional_layer l, network net) { fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1); if(l.binary){ binarize_weights_gpu(l.weights_gpu, l.n, l.c/l.groups*l.size*l.size, l.binary_weights_gpu); swap_binary(&l); } if(l.xnor){ binarize_weights_gpu(l.weights_gpu, l.n, l.c/l.groups*l.size*l.size, l.binary_weights_gpu); swap_binary(&l); binarize_gpu(net.input_gpu, l.c*l.h*l.w*l.batch, l.binary_input_gpu); net.input_gpu = l.binary_input_gpu; } #ifdef CUDNN float one = 1; cudnnConvolutionForward(cudnn_handle(), &one, l.srcTensorDesc, net.input_gpu, l.weightDesc, l.weights_gpu, l.convDesc, l.fw_algo, net.workspace, l.workspace_size, &one, l.dstTensorDesc, l.output_gpu); #else int i, j; int m = l.n/l.groups; int k = l.size*l.size*l.c/l.groups; int n = l.out_w*l.out_h; for(i = 0; i < l.batch; ++i){ for(j = 0; j < l.groups; ++j){ float *a = l.weights_gpu + j*l.nweights/l.groups; float *b = net.workspace; float *c = l.output_gpu + (i*l.groups + j)*n*m; float *im = net.input_gpu + (i*l.groups + j)*l.c/l.groups*l.h*l.w; if (l.size == 1){ b = im; } else { im2col_gpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b); } gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n); } } #endif if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, net); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation); //if(l.dot > 0) dot_error_gpu(l); if(l.binary || l.xnor) swap_binary(&l); } __global__ void smooth_kernel(float *x, int n, int w, int h, int c, int size, float rate, float *delta) { int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if(id >= n) return; int j = id % w; id /= w; int i = id % h; id /= h; int k = id % c; id /= c; int b = id; int w_offset = -(size/2.f); int h_offset = -(size/2.f); int out_index = j + w*(i + h*(k + c*b)); int l, m; for(l = 0; l < size; ++l){ for(m = 0; m < size; ++m){ int cur_h = h_offset + i + l; int cur_w = w_offset + j + m; int index = cur_w + w*(cur_h + h*(k + b*c)); int valid = (cur_h >= 0 && cur_h < h && cur_w >= 0 && cur_w < w); delta[out_index] += valid ? rate*(x[index] - x[out_index]) : 0; } } } extern "C" void smooth_layer(layer l, int size, float rate) { int h = l.out_h; int w = l.out_w; int c = l.out_c; size_t n = h*w*c*l.batch; smooth_kernel<<>>(l.output_gpu, n, l.w, l.h, l.c, size, rate, l.delta_gpu); check_error(cudaPeekAtLastError()); } void backward_convolutional_layer_gpu(convolutional_layer l, network net) { if(l.smooth){ smooth_layer(l, 5, l.smooth); } //constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1); gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); if(l.batch_normalize){ backward_batchnorm_layer_gpu(l, net); } else { backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); } float *original_input = net.input_gpu; if(l.xnor) net.input_gpu = l.binary_input_gpu; #ifdef CUDNN float one = 1; cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc, net.input_gpu, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bf_algo, net.workspace, l.workspace_size, &one, l.dweightDesc, l.weight_updates_gpu); if(net.delta_gpu){ if(l.binary || l.xnor) swap_binary(&l); cudnnConvolutionBackwardData(cudnn_handle(), &one, l.weightDesc, l.weights_gpu, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bd_algo, net.workspace, l.workspace_size, &one, l.dsrcTensorDesc, net.delta_gpu); if(l.binary || l.xnor) swap_binary(&l); if(l.xnor) gradient_array_gpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, net.delta_gpu); } #else int m = l.n/l.groups; int n = l.size*l.size*l.c/l.groups; int k = l.out_w*l.out_h; int i, j; for(i = 0; i < l.batch; ++i){ for(j = 0; j < l.groups; ++j){ float *a = l.delta_gpu + (i*l.groups + j)*m*k; float *b = net.workspace; float *c = l.weight_updates_gpu + j*l.nweights/l.groups; float *im = net.input_gpu+(i*l.groups + j)*l.c/l.groups*l.h*l.w; float *imd = net.delta_gpu+(i*l.groups + j)*l.c/l.groups*l.h*l.w; im2col_gpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b); gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n); if (net.delta_gpu) { if (l.binary || l.xnor) swap_binary(&l); a = l.weights_gpu + j*l.nweights/l.groups; b = l.delta_gpu + (i*l.groups + j)*m*k; c = net.workspace; if (l.size == 1) { c = imd; } gemm_gpu(1,0,n,k,m,1,a,n,b,k,0,c,k); if (l.size != 1) { col2im_gpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, imd); } if(l.binary || l.xnor) { swap_binary(&l); } } if(l.xnor) gradient_array_gpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, net.delta_gpu + i*l.c*l.h*l.w); } } #endif } void pull_convolutional_layer(layer l) { cuda_pull_array(l.weights_gpu, l.weights, l.nweights); cuda_pull_array(l.biases_gpu, l.biases, l.n); cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.nweights); cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n); if (l.batch_normalize){ cuda_pull_array(l.scales_gpu, l.scales, l.n); cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.n); cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.n); } } void push_convolutional_layer(layer l) { cuda_push_array(l.weights_gpu, l.weights, l.nweights); cuda_push_array(l.biases_gpu, l.biases, l.n); cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights); cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); if (l.batch_normalize){ cuda_push_array(l.scales_gpu, l.scales, l.n); cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n); cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n); } } void update_convolutional_layer_gpu(layer l, update_args a) { float learning_rate = a.learning_rate*l.learning_rate_scale; float momentum = a.momentum; float decay = a.decay; int batch = a.batch; if(a.adam){ adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t); adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t); if(l.scales_gpu){ adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t); } }else{ axpy_gpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_gpu(l.nweights, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); scal_gpu(l.nweights, momentum, l.weight_updates_gpu, 1); axpy_gpu(l.n, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_gpu(l.n, momentum, l.bias_updates_gpu, 1); if(l.scales_gpu){ axpy_gpu(l.n, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); scal_gpu(l.n, momentum, l.scale_updates_gpu, 1); } } if(l.clip){ constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1); } }