#include "connected_layer.h" #include "convolutional_layer.h" #include "batchnorm_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam) { int i; layer l = {0}; l.learning_rate_scale = 1; l.type = CONNECTED; l.inputs = inputs; l.outputs = outputs; l.batch=batch; l.batch_normalize = batch_normalize; l.h = 1; l.w = 1; l.c = inputs; l.out_h = 1; l.out_w = 1; l.out_c = outputs; l.output = calloc(batch*outputs, sizeof(float)); l.delta = calloc(batch*outputs, sizeof(float)); l.weight_updates = calloc(inputs*outputs, sizeof(float)); l.bias_updates = calloc(outputs, sizeof(float)); l.weights = calloc(outputs*inputs, sizeof(float)); l.biases = calloc(outputs, sizeof(float)); l.forward = forward_connected_layer; l.backward = backward_connected_layer; l.update = update_connected_layer; //float scale = 1./sqrt(inputs); float scale = sqrt(2./inputs); for(i = 0; i < outputs*inputs; ++i){ l.weights[i] = scale*rand_uniform(-1, 1); } for(i = 0; i < outputs; ++i){ l.biases[i] = 0; } if(adam){ l.m = calloc(l.inputs*l.outputs, sizeof(float)); l.v = calloc(l.inputs*l.outputs, sizeof(float)); l.bias_m = calloc(l.outputs, sizeof(float)); l.scale_m = calloc(l.outputs, sizeof(float)); l.bias_v = calloc(l.outputs, sizeof(float)); l.scale_v = calloc(l.outputs, sizeof(float)); } if(batch_normalize){ l.scales = calloc(outputs, sizeof(float)); l.scale_updates = calloc(outputs, sizeof(float)); for(i = 0; i < outputs; ++i){ l.scales[i] = 1; } l.mean = calloc(outputs, sizeof(float)); l.mean_delta = calloc(outputs, sizeof(float)); l.variance = calloc(outputs, sizeof(float)); l.variance_delta = calloc(outputs, sizeof(float)); l.rolling_mean = calloc(outputs, sizeof(float)); l.rolling_variance = calloc(outputs, sizeof(float)); l.x = calloc(batch*outputs, sizeof(float)); l.x_norm = calloc(batch*outputs, sizeof(float)); } #ifdef GPU l.forward_gpu = forward_connected_layer_gpu; l.backward_gpu = backward_connected_layer_gpu; l.update_gpu = update_connected_layer_gpu; l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); l.biases_gpu = cuda_make_array(l.biases, outputs); l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); l.output_gpu = cuda_make_array(l.output, outputs*batch); l.delta_gpu = cuda_make_array(l.delta, outputs*batch); if (adam) { l.m_gpu = cuda_make_array(0, inputs*outputs); l.v_gpu = cuda_make_array(0, inputs*outputs); l.bias_m_gpu = cuda_make_array(0, outputs); l.bias_v_gpu = cuda_make_array(0, outputs); l.scale_m_gpu = cuda_make_array(0, outputs); l.scale_v_gpu = cuda_make_array(0, outputs); } if(batch_normalize){ l.mean_gpu = cuda_make_array(l.mean, outputs); l.variance_gpu = cuda_make_array(l.variance, outputs); l.rolling_mean_gpu = cuda_make_array(l.mean, outputs); l.rolling_variance_gpu = cuda_make_array(l.variance, outputs); l.mean_delta_gpu = cuda_make_array(l.mean, outputs); l.variance_delta_gpu = cuda_make_array(l.variance, outputs); l.scales_gpu = cuda_make_array(l.scales, outputs); l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs); l.x_gpu = cuda_make_array(l.output, l.batch*outputs); l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs); #ifdef CUDNN cudnnCreateTensorDescriptor(&l.normTensorDesc); cudnnCreateTensorDescriptor(&l.dstTensorDesc); cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1); #endif } #endif l.activation = activation; fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs); return l; } void update_connected_layer(layer l, update_args a) { float learning_rate = a.learning_rate*l.learning_rate_scale; float momentum = a.momentum; float decay = a.decay; int batch = a.batch; axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); scal_cpu(l.outputs, momentum, l.bias_updates, 1); if(l.batch_normalize){ axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1); scal_cpu(l.outputs, momentum, l.scale_updates, 1); } axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); } void forward_connected_layer(layer l, network net) { fill_cpu(l.outputs*l.batch, 0, l.output, 1); int m = l.batch; int k = l.inputs; int n = l.outputs; float *a = net.input; float *b = l.weights; float *c = l.output; gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); if(l.batch_normalize){ forward_batchnorm_layer(l, net); } else { add_bias(l.output, l.biases, l.batch, l.outputs, 1); } activate_array(l.output, l.outputs*l.batch, l.activation); } void backward_connected_layer(layer l, network net) { gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); if(l.batch_normalize){ backward_batchnorm_layer(l, net); } else { backward_bias(l.bias_updates, l.delta, l.batch, l.outputs, 1); } int m = l.outputs; int k = l.batch; int n = l.inputs; float *a = l.delta; float *b = net.input; float *c = l.weight_updates; gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); m = l.batch; k = l.outputs; n = l.inputs; a = l.delta; b = l.weights; c = net.delta; if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); } void denormalize_connected_layer(layer l) { int i, j; for(i = 0; i < l.outputs; ++i){ float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001); for(j = 0; j < l.inputs; ++j){ l.weights[i*l.inputs + j] *= scale; } l.biases[i] -= l.rolling_mean[i] * scale; l.scales[i] = 1; l.rolling_mean[i] = 0; l.rolling_variance[i] = 1; } } void statistics_connected_layer(layer l) { if(l.batch_normalize){ printf("Scales "); print_statistics(l.scales, l.outputs); /* printf("Rolling Mean "); print_statistics(l.rolling_mean, l.outputs); printf("Rolling Variance "); print_statistics(l.rolling_variance, l.outputs); */ } printf("Biases "); print_statistics(l.biases, l.outputs); printf("Weights "); print_statistics(l.weights, l.outputs); } #ifdef GPU void pull_connected_layer(layer l) { cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); cuda_pull_array(l.biases_gpu, l.biases, l.outputs); cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); if (l.batch_normalize){ cuda_pull_array(l.scales_gpu, l.scales, l.outputs); cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); } } void push_connected_layer(layer l) { cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); cuda_push_array(l.biases_gpu, l.biases, l.outputs); cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); if (l.batch_normalize){ cuda_push_array(l.scales_gpu, l.scales, l.outputs); cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); } } void update_connected_layer_gpu(layer l, update_args a) { float learning_rate = a.learning_rate*l.learning_rate_scale; float momentum = a.momentum; float decay = a.decay; int batch = a.batch; if(a.adam){ adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.inputs*l.outputs, batch, a.t); adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t); if(l.scales_gpu){ adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t); } }else{ axpy_gpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_gpu(l.outputs, momentum, l.bias_updates_gpu, 1); if(l.batch_normalize){ axpy_gpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); scal_gpu(l.outputs, momentum, l.scale_updates_gpu, 1); } axpy_gpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_gpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); scal_gpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); } } void forward_connected_layer_gpu(layer l, network net) { fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1); int m = l.batch; int k = l.inputs; int n = l.outputs; float * a = net.input_gpu; float * b = l.weights_gpu; float * c = l.output_gpu; gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n); if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, net); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1); } activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation); } void backward_connected_layer_gpu(layer l, network net) { constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1); gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); if(l.batch_normalize){ backward_batchnorm_layer_gpu(l, net); } else { backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.outputs, 1); } int m = l.outputs; int k = l.batch; int n = l.inputs; float * a = l.delta_gpu; float * b = net.input_gpu; float * c = l.weight_updates_gpu; gemm_gpu(1,0,m,n,k,1,a,m,b,n,1,c,n); m = l.batch; k = l.outputs; n = l.inputs; a = l.delta_gpu; b = l.weights_gpu; c = net.delta_gpu; if(c) gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n); } #endif