Spaces:
Sleeping
Sleeping
char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"}; | |
void train_dice(char *cfgfile, char *weightfile) | |
{ | |
srand(time(0)); | |
float avg_loss = -1; | |
char *base = basecfg(cfgfile); | |
char *backup_directory = "/home/pjreddie/backup/"; | |
printf("%s\n", base); | |
network net = parse_network_cfg(cfgfile); | |
if(weightfile){ | |
load_weights(&net, weightfile); | |
} | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); | |
int imgs = 1024; | |
int i = *net.seen/imgs; | |
char **labels = dice_labels; | |
list *plist = get_paths("data/dice/dice.train.list"); | |
char **paths = (char **)list_to_array(plist); | |
printf("%d\n", plist->size); | |
clock_t time; | |
while(1){ | |
++i; | |
time=clock(); | |
data train = load_data_old(paths, imgs, plist->size, labels, 6, net.w, net.h); | |
printf("Loaded: %lf seconds\n", sec(clock()-time)); | |
time=clock(); | |
float loss = train_network(net, train); | |
if(avg_loss == -1) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
printf("%d: %f, %f avg, %lf seconds, %ld images\n", i, loss, avg_loss, sec(clock()-time), *net.seen); | |
free_data(train); | |
if((i % 100) == 0) net.learning_rate *= .1; | |
if(i%100==0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); | |
save_weights(net, buff); | |
} | |
} | |
} | |
void validate_dice(char *filename, char *weightfile) | |
{ | |
network net = parse_network_cfg(filename); | |
if(weightfile){ | |
load_weights(&net, weightfile); | |
} | |
srand(time(0)); | |
char **labels = dice_labels; | |
list *plist = get_paths("data/dice/dice.val.list"); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
data val = load_data_old(paths, m, 0, labels, 6, net.w, net.h); | |
float *acc = network_accuracies(net, val, 2); | |
printf("Validation Accuracy: %f, %d images\n", acc[0], m); | |
free_data(val); | |
} | |
void test_dice(char *cfgfile, char *weightfile, char *filename) | |
{ | |
network net = parse_network_cfg(cfgfile); | |
if(weightfile){ | |
load_weights(&net, weightfile); | |
} | |
set_batch_network(&net, 1); | |
srand(2222222); | |
int i = 0; | |
char **names = dice_labels; | |
char buff[256]; | |
char *input = buff; | |
int indexes[6]; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
}else{ | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input, net.w, net.h); | |
float *X = im.data; | |
float *predictions = network_predict(net, X); | |
top_predictions(net, 6, indexes); | |
for(i = 0; i < 6; ++i){ | |
int index = indexes[i]; | |
printf("%s: %f\n", names[index], predictions[index]); | |
} | |
free_image(im); | |
if (filename) break; | |
} | |
} | |
void run_dice(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *cfg = argv[3]; | |
char *weights = (argc > 4) ? argv[4] : 0; | |
char *filename = (argc > 5) ? argv[5]: 0; | |
if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename); | |
else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights); | |
else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights); | |
} | |