Spaces:
Sleeping
Sleeping
float *get_regression_values(char **labels, int n) | |
{ | |
float *v = calloc(n, sizeof(float)); | |
int i; | |
for(i = 0; i < n; ++i){ | |
char *p = strchr(labels[i], ' '); | |
*p = 0; | |
v[i] = atof(p+1); | |
} | |
return v; | |
} | |
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) | |
{ | |
int i; | |
float avg_loss = -1; | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
printf("%d\n", ngpus); | |
network **nets = calloc(ngpus, sizeof(network*)); | |
srand(time(0)); | |
int seed = rand(); | |
for(i = 0; i < ngpus; ++i){ | |
srand(seed); | |
cuda_set_device(gpus[i]); | |
nets[i] = load_network(cfgfile, weightfile, clear); | |
nets[i]->learning_rate *= ngpus; | |
} | |
srand(time(0)); | |
network *net = nets[0]; | |
int imgs = net->batch * net->subdivisions * ngpus; | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
list *options = read_data_cfg(datacfg); | |
char *backup_directory = option_find_str(options, "backup", "/backup/"); | |
int tag = option_find_int_quiet(options, "tag", 0); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *train_list = option_find_str(options, "train", "data/train.list"); | |
char *tree = option_find_str(options, "tree", 0); | |
if (tree) net->hierarchy = read_tree(tree); | |
int classes = option_find_int(options, "classes", 2); | |
char **labels = 0; | |
if(!tag){ | |
labels = get_labels(label_list); | |
} | |
list *plist = get_paths(train_list); | |
char **paths = (char **)list_to_array(plist); | |
printf("%d\n", plist->size); | |
int N = plist->size; | |
double time; | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.threads = 32; | |
args.hierarchy = net->hierarchy; | |
args.min = net->min_ratio*net->w; | |
args.max = net->max_ratio*net->w; | |
printf("%d %d\n", args.min, args.max); | |
args.angle = net->angle; | |
args.aspect = net->aspect; | |
args.exposure = net->exposure; | |
args.saturation = net->saturation; | |
args.hue = net->hue; | |
args.size = net->w; | |
args.paths = paths; | |
args.classes = classes; | |
args.n = imgs; | |
args.m = N; | |
args.labels = labels; | |
if (tag){ | |
args.type = TAG_DATA; | |
} else { | |
args.type = CLASSIFICATION_DATA; | |
} | |
data train; | |
data buffer; | |
pthread_t load_thread; | |
args.d = &buffer; | |
load_thread = load_data(args); | |
int count = 0; | |
int epoch = (*net->seen)/N; | |
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
if(net->random && count++%40 == 0){ | |
printf("Resizing\n"); | |
int dim = (rand() % 11 + 4) * 32; | |
//if (get_current_batch(net)+200 > net->max_batches) dim = 608; | |
//int dim = (rand() % 4 + 16) * 32; | |
printf("%d\n", dim); | |
args.w = dim; | |
args.h = dim; | |
args.size = dim; | |
args.min = net->min_ratio*dim; | |
args.max = net->max_ratio*dim; | |
printf("%d %d\n", args.min, args.max); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
free_data(train); | |
load_thread = load_data(args); | |
for(i = 0; i < ngpus; ++i){ | |
resize_network(nets[i], dim, dim); | |
} | |
net = nets[0]; | |
} | |
time = what_time_is_it_now(); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
load_thread = load_data(args); | |
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); | |
time = what_time_is_it_now(); | |
float loss = 0; | |
if(ngpus == 1){ | |
loss = train_network(net, train); | |
} else { | |
loss = train_networks(nets, ngpus, train, 4); | |
} | |
loss = train_network(net, train); | |
if(avg_loss == -1) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen); | |
free_data(train); | |
if(*net->seen/N > epoch){ | |
epoch = *net->seen/N; | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
save_weights(net, buff); | |
} | |
if(get_current_batch(net)%1000 == 0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup",backup_directory,base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s.weights", backup_directory, base); | |
save_weights(net, buff); | |
pthread_join(load_thread, 0); | |
free_network(net); | |
if(labels) free_ptrs((void**)labels, classes); | |
free_ptrs((void**)paths, plist->size); | |
free_list(plist); | |
free(base); | |
} | |
void validate_classifier_crop(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i = 0; | |
network *net = load_network(filename, weightfile, 0); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
clock_t time; | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int splits = m/1000; | |
int num = (i+1)*m/splits - i*m/splits; | |
data val, buffer; | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.paths = paths; | |
args.classes = classes; | |
args.n = num; | |
args.m = 0; | |
args.labels = labels; | |
args.d = &buffer; | |
args.type = OLD_CLASSIFICATION_DATA; | |
pthread_t load_thread = load_data_in_thread(args); | |
for(i = 1; i <= splits; ++i){ | |
time=clock(); | |
pthread_join(load_thread, 0); | |
val = buffer; | |
num = (i+1)*m/splits - i*m/splits; | |
char **part = paths+(i*m/splits); | |
if(i != splits){ | |
args.paths = part; | |
load_thread = load_data_in_thread(args); | |
} | |
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); | |
time=clock(); | |
float *acc = network_accuracies(net, val, topk); | |
avg_acc += acc[0]; | |
avg_topk += acc[1]; | |
printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows); | |
free_data(val); | |
} | |
} | |
void validate_classifier_10(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i, j; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int *indexes = calloc(topk, sizeof(int)); | |
for(i = 0; i < m; ++i){ | |
int class = -1; | |
char *path = paths[i]; | |
for(j = 0; j < classes; ++j){ | |
if(strstr(path, labels[j])){ | |
class = j; | |
break; | |
} | |
} | |
int w = net->w; | |
int h = net->h; | |
int shift = 32; | |
image im = load_image_color(paths[i], w+shift, h+shift); | |
image images[10]; | |
images[0] = crop_image(im, -shift, -shift, w, h); | |
images[1] = crop_image(im, shift, -shift, w, h); | |
images[2] = crop_image(im, 0, 0, w, h); | |
images[3] = crop_image(im, -shift, shift, w, h); | |
images[4] = crop_image(im, shift, shift, w, h); | |
flip_image(im); | |
images[5] = crop_image(im, -shift, -shift, w, h); | |
images[6] = crop_image(im, shift, -shift, w, h); | |
images[7] = crop_image(im, 0, 0, w, h); | |
images[8] = crop_image(im, -shift, shift, w, h); | |
images[9] = crop_image(im, shift, shift, w, h); | |
float *pred = calloc(classes, sizeof(float)); | |
for(j = 0; j < 10; ++j){ | |
float *p = network_predict(net, images[j].data); | |
if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1, 1); | |
axpy_cpu(classes, 1, p, 1, pred, 1); | |
free_image(images[j]); | |
} | |
free_image(im); | |
top_k(pred, classes, topk, indexes); | |
free(pred); | |
if(indexes[0] == class) avg_acc += 1; | |
for(j = 0; j < topk; ++j){ | |
if(indexes[j] == class) avg_topk += 1; | |
} | |
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); | |
} | |
} | |
void validate_classifier_full(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i, j; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int *indexes = calloc(topk, sizeof(int)); | |
int size = net->w; | |
for(i = 0; i < m; ++i){ | |
int class = -1; | |
char *path = paths[i]; | |
for(j = 0; j < classes; ++j){ | |
if(strstr(path, labels[j])){ | |
class = j; | |
break; | |
} | |
} | |
image im = load_image_color(paths[i], 0, 0); | |
image resized = resize_min(im, size); | |
resize_network(net, resized.w, resized.h); | |
//show_image(im, "orig"); | |
//show_image(crop, "cropped"); | |
//cvWaitKey(0); | |
float *pred = network_predict(net, resized.data); | |
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1); | |
free_image(im); | |
free_image(resized); | |
top_k(pred, classes, topk, indexes); | |
if(indexes[0] == class) avg_acc += 1; | |
for(j = 0; j < topk; ++j){ | |
if(indexes[j] == class) avg_topk += 1; | |
} | |
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); | |
} | |
} | |
void validate_classifier_single(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i, j; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *leaf_list = option_find_str(options, "leaves", 0); | |
if(leaf_list) change_leaves(net->hierarchy, leaf_list); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int *indexes = calloc(topk, sizeof(int)); | |
for(i = 0; i < m; ++i){ | |
int class = -1; | |
char *path = paths[i]; | |
for(j = 0; j < classes; ++j){ | |
if(strstr(path, labels[j])){ | |
class = j; | |
break; | |
} | |
} | |
image im = load_image_color(paths[i], 0, 0); | |
image crop = center_crop_image(im, net->w, net->h); | |
//grayscale_image_3c(crop); | |
//show_image(im, "orig"); | |
//show_image(crop, "cropped"); | |
//cvWaitKey(0); | |
float *pred = network_predict(net, crop.data); | |
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1); | |
free_image(im); | |
free_image(crop); | |
top_k(pred, classes, topk, indexes); | |
if(indexes[0] == class) avg_acc += 1; | |
for(j = 0; j < topk; ++j){ | |
if(indexes[j] == class) avg_topk += 1; | |
} | |
printf("%s, %d, %f, %f, \n", paths[i], class, pred[0], pred[1]); | |
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); | |
} | |
} | |
void validate_classifier_multi(char *datacfg, char *cfg, char *weights) | |
{ | |
int i, j; | |
network *net = load_network(cfg, weights, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
//int scales[] = {224, 288, 320, 352, 384}; | |
int scales[] = {224, 256, 288, 320}; | |
int nscales = sizeof(scales)/sizeof(scales[0]); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int *indexes = calloc(topk, sizeof(int)); | |
for(i = 0; i < m; ++i){ | |
int class = -1; | |
char *path = paths[i]; | |
for(j = 0; j < classes; ++j){ | |
if(strstr(path, labels[j])){ | |
class = j; | |
break; | |
} | |
} | |
float *pred = calloc(classes, sizeof(float)); | |
image im = load_image_color(paths[i], 0, 0); | |
for(j = 0; j < nscales; ++j){ | |
image r = resize_max(im, scales[j]); | |
resize_network(net, r.w, r.h); | |
float *p = network_predict(net, r.data); | |
if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1 , 1); | |
axpy_cpu(classes, 1, p, 1, pred, 1); | |
flip_image(r); | |
p = network_predict(net, r.data); | |
axpy_cpu(classes, 1, p, 1, pred, 1); | |
if(r.data != im.data) free_image(r); | |
} | |
free_image(im); | |
top_k(pred, classes, topk, indexes); | |
free(pred); | |
if(indexes[0] == class) avg_acc += 1; | |
for(j = 0; j < topk; ++j){ | |
if(indexes[j] == class) avg_topk += 1; | |
} | |
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); | |
} | |
} | |
void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
list *options = read_data_cfg(datacfg); | |
char *name_list = option_find_str(options, "names", 0); | |
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); | |
int top = option_find_int(options, "top", 1); | |
int i = 0; | |
char **names = get_labels(name_list); | |
clock_t time; | |
int *indexes = calloc(top, sizeof(int)); | |
char buff[256]; | |
char *input = buff; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
}else{ | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image orig = load_image_color(input, 0, 0); | |
image r = resize_min(orig, 256); | |
image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224); | |
float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742}; | |
float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583}; | |
float var[3]; | |
var[0] = std[0]*std[0]; | |
var[1] = std[1]*std[1]; | |
var[2] = std[2]*std[2]; | |
normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h); | |
float *X = im.data; | |
time=clock(); | |
float *predictions = network_predict(net, X); | |
layer l = net->layers[layer_num]; | |
for(i = 0; i < l.c; ++i){ | |
if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); | |
} | |
cuda_pull_array(l.output_gpu, l.output, l.outputs); | |
for(i = 0; i < l.outputs; ++i){ | |
printf("%f\n", l.output[i]); | |
} | |
/* | |
printf("\n\nWeights\n"); | |
for(i = 0; i < l.n*l.size*l.size*l.c; ++i){ | |
printf("%f\n", l.filters[i]); | |
} | |
printf("\n\nBiases\n"); | |
for(i = 0; i < l.n; ++i){ | |
printf("%f\n", l.biases[i]); | |
} | |
*/ | |
top_predictions(net, top, indexes); | |
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
for(i = 0; i < top; ++i){ | |
int index = indexes[i]; | |
printf("%s: %f\n", names[index], predictions[index]); | |
} | |
free_image(im); | |
if (filename) break; | |
} | |
} | |
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
list *options = read_data_cfg(datacfg); | |
char *name_list = option_find_str(options, "names", 0); | |
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); | |
if(top == 0) top = option_find_int(options, "top", 1); | |
int i = 0; | |
char **names = get_labels(name_list); | |
clock_t time; | |
int *indexes = calloc(top, sizeof(int)); | |
char buff[256]; | |
char *input = buff; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
}else{ | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input, 0, 0); | |
image r = letterbox_image(im, net->w, net->h); | |
//image r = resize_min(im, 320); | |
//printf("%d %d\n", r.w, r.h); | |
//resize_network(net, r.w, r.h); | |
//printf("%d %d\n", r.w, r.h); | |
float *X = r.data; | |
time=clock(); | |
float *predictions = network_predict(net, X); | |
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1); | |
top_k(predictions, net->outputs, top, indexes); | |
fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
for(i = 0; i < top; ++i){ | |
int index = indexes[i]; | |
//if(net->hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net->hierarchy->parent[index] >= 0) ? names[net->hierarchy->parent[index]] : "Root"); | |
//else printf("%s: %f\n",names[index], predictions[index]); | |
printf("%5.2f%%: %s\n", predictions[index]*100, names[index]); | |
} | |
if(r.data != im.data) free_image(r); | |
free_image(im); | |
if (filename) break; | |
} | |
} | |
void label_classifier(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "names", "data/labels.list"); | |
char *test_list = option_find_str(options, "test", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(test_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
for(i = 0; i < m; ++i){ | |
image im = load_image_color(paths[i], 0, 0); | |
image resized = resize_min(im, net->w); | |
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h); | |
float *pred = network_predict(net, crop.data); | |
if(resized.data != im.data) free_image(resized); | |
free_image(im); | |
free_image(crop); | |
int ind = max_index(pred, classes); | |
printf("%s\n", labels[ind]); | |
} | |
} | |
void csv_classifier(char *datacfg, char *cfgfile, char *weightfile) | |
{ | |
int i,j; | |
network *net = load_network(cfgfile, weightfile, 0); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *test_list = option_find_str(options, "test", "data/test.list"); | |
int top = option_find_int(options, "top", 1); | |
list *plist = get_paths(test_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
int *indexes = calloc(top, sizeof(int)); | |
for(i = 0; i < m; ++i){ | |
double time = what_time_is_it_now(); | |
char *path = paths[i]; | |
image im = load_image_color(path, 0, 0); | |
image r = letterbox_image(im, net->w, net->h); | |
float *predictions = network_predict(net, r.data); | |
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1); | |
top_k(predictions, net->outputs, top, indexes); | |
printf("%s", path); | |
for(j = 0; j < top; ++j){ | |
printf("\t%d", indexes[j]); | |
} | |
printf("\n"); | |
free_image(im); | |
free_image(r); | |
fprintf(stderr, "%lf seconds, %d images, %d total\n", what_time_is_it_now() - time, i+1, m); | |
} | |
} | |
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) | |
{ | |
int curr = 0; | |
network *net = load_network(cfgfile, weightfile, 0); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *test_list = option_find_str(options, "test", "data/test.list"); | |
int classes = option_find_int(options, "classes", 2); | |
list *plist = get_paths(test_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
clock_t time; | |
data val, buffer; | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.paths = paths; | |
args.classes = classes; | |
args.n = net->batch; | |
args.m = 0; | |
args.labels = 0; | |
args.d = &buffer; | |
args.type = OLD_CLASSIFICATION_DATA; | |
pthread_t load_thread = load_data_in_thread(args); | |
for(curr = net->batch; curr < m; curr += net->batch){ | |
time=clock(); | |
pthread_join(load_thread, 0); | |
val = buffer; | |
if(curr < m){ | |
args.paths = paths + curr; | |
if (curr + net->batch > m) args.n = m - curr; | |
load_thread = load_data_in_thread(args); | |
} | |
fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); | |
time=clock(); | |
matrix pred = network_predict_data(net, val); | |
int i, j; | |
if (target_layer >= 0){ | |
//layer l = net->layers[target_layer]; | |
} | |
for(i = 0; i < pred.rows; ++i){ | |
printf("%s", paths[curr-net->batch+i]); | |
for(j = 0; j < pred.cols; ++j){ | |
printf("\t%g", pred.vals[i][j]); | |
} | |
printf("\n"); | |
} | |
free_matrix(pred); | |
fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr); | |
free_data(val); | |
} | |
} | |
void file_output_classifier(char *datacfg, char *filename, char *weightfile, char *listfile) | |
{ | |
int i,j; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
//char *label_list = option_find_str(options, "names", "data/labels.list"); | |
int classes = option_find_int(options, "classes", 2); | |
list *plist = get_paths(listfile); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
for(i = 0; i < m; ++i){ | |
image im = load_image_color(paths[i], 0, 0); | |
image resized = resize_min(im, net->w); | |
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h); | |
float *pred = network_predict(net, crop.data); | |
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 0, 1); | |
if(resized.data != im.data) free_image(resized); | |
free_image(im); | |
free_image(crop); | |
printf("%s", paths[i]); | |
for(j = 0; j < classes; ++j){ | |
printf("\t%g", pred[j]); | |
} | |
printf("\n"); | |
} | |
} | |
void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) | |
{ | |
float threat = 0; | |
float roll = .2; | |
printf("Classifier Demo\n"); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
list *options = read_data_cfg(datacfg); | |
srand(2222222); | |
void * cap = open_video_stream(filename, cam_index, 0,0,0); | |
int top = option_find_int(options, "top", 1); | |
char *name_list = option_find_str(options, "names", 0); | |
char **names = get_labels(name_list); | |
int *indexes = calloc(top, sizeof(int)); | |
if(!cap) error("Couldn't connect to webcam.\n"); | |
//cvNamedWindow("Threat", CV_WINDOW_NORMAL); | |
//cvResizeWindow("Threat", 512, 512); | |
float fps = 0; | |
int i; | |
int count = 0; | |
while(1){ | |
++count; | |
struct timeval tval_before, tval_after, tval_result; | |
gettimeofday(&tval_before, NULL); | |
image in = get_image_from_stream(cap); | |
if(!in.data) break; | |
image in_s = resize_image(in, net->w, net->h); | |
image out = in; | |
int x1 = out.w / 20; | |
int y1 = out.h / 20; | |
int x2 = 2*x1; | |
int y2 = out.h - out.h/20; | |
int border = .01*out.h; | |
int h = y2 - y1 - 2*border; | |
int w = x2 - x1 - 2*border; | |
float *predictions = network_predict(net, in_s.data); | |
float curr_threat = 0; | |
if(1){ | |
curr_threat = predictions[0] * 0 + | |
predictions[1] * .6 + | |
predictions[2]; | |
} else { | |
curr_threat = predictions[218] + | |
predictions[539] + | |
predictions[540] + | |
predictions[368] + | |
predictions[369] + | |
predictions[370]; | |
} | |
threat = roll * curr_threat + (1-roll) * threat; | |
draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0); | |
if(threat > .97) { | |
draw_box_width(out, x2 + .5 * w + border, | |
y1 + .02*h - 2*border, | |
x2 + .5 * w + 6*border, | |
y1 + .02*h + 3*border, 3*border, 1,0,0); | |
} | |
draw_box_width(out, x2 + .5 * w + border, | |
y1 + .02*h - 2*border, | |
x2 + .5 * w + 6*border, | |
y1 + .02*h + 3*border, .5*border, 0,0,0); | |
draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0); | |
if(threat > .57) { | |
draw_box_width(out, x2 + .5 * w + border, | |
y1 + .42*h - 2*border, | |
x2 + .5 * w + 6*border, | |
y1 + .42*h + 3*border, 3*border, 1,1,0); | |
} | |
draw_box_width(out, x2 + .5 * w + border, | |
y1 + .42*h - 2*border, | |
x2 + .5 * w + 6*border, | |
y1 + .42*h + 3*border, .5*border, 0,0,0); | |
draw_box_width(out, x1, y1, x2, y2, border, 0,0,0); | |
for(i = 0; i < threat * h ; ++i){ | |
float ratio = (float) i / h; | |
float r = (ratio < .5) ? (2*(ratio)) : 1; | |
float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5); | |
draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0); | |
} | |
top_predictions(net, top, indexes); | |
char buff[256]; | |
sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count); | |
//save_image(out, buff); | |
printf("\033[2J"); | |
printf("\033[1;1H"); | |
printf("\nFPS:%.0f\n",fps); | |
for(i = 0; i < top; ++i){ | |
int index = indexes[i]; | |
printf("%.1f%%: %s\n", predictions[index]*100, names[index]); | |
} | |
if(1){ | |
show_image(out, "Threat", 10); | |
} | |
free_image(in_s); | |
free_image(in); | |
gettimeofday(&tval_after, NULL); | |
timersub(&tval_after, &tval_before, &tval_result); | |
float curr = 1000000.f/((long int)tval_result.tv_usec); | |
fps = .9*fps + .1*curr; | |
} | |
} | |
void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) | |
{ | |
int bad_cats[] = {218, 539, 540, 1213, 1501, 1742, 1911, 2415, 4348, 19223, 368, 369, 370, 1133, 1200, 1306, 2122, 2301, 2537, 2823, 3179, 3596, 3639, 4489, 5107, 5140, 5289, 6240, 6631, 6762, 7048, 7171, 7969, 7984, 7989, 8824, 8927, 9915, 10270, 10448, 13401, 15205, 18358, 18894, 18895, 19249, 19697}; | |
printf("Classifier Demo\n"); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
list *options = read_data_cfg(datacfg); | |
srand(2222222); | |
void * cap = open_video_stream(filename, cam_index, 0,0,0); | |
int top = option_find_int(options, "top", 1); | |
char *name_list = option_find_str(options, "names", 0); | |
char **names = get_labels(name_list); | |
int *indexes = calloc(top, sizeof(int)); | |
if(!cap) error("Couldn't connect to webcam.\n"); | |
float fps = 0; | |
int i; | |
while(1){ | |
struct timeval tval_before, tval_after, tval_result; | |
gettimeofday(&tval_before, NULL); | |
image in = get_image_from_stream(cap); | |
image in_s = resize_image(in, net->w, net->h); | |
float *predictions = network_predict(net, in_s.data); | |
top_predictions(net, top, indexes); | |
printf("\033[2J"); | |
printf("\033[1;1H"); | |
int threat = 0; | |
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ | |
int index = bad_cats[i]; | |
if(predictions[index] > .01){ | |
printf("Threat Detected!\n"); | |
threat = 1; | |
break; | |
} | |
} | |
if(!threat) printf("Scanning...\n"); | |
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ | |
int index = bad_cats[i]; | |
if(predictions[index] > .01){ | |
printf("%s\n", names[index]); | |
} | |
} | |
show_image(in, "Threat Detection", 10); | |
free_image(in_s); | |
free_image(in); | |
gettimeofday(&tval_after, NULL); | |
timersub(&tval_after, &tval_before, &tval_result); | |
float curr = 1000000.f/((long int)tval_result.tv_usec); | |
fps = .9*fps + .1*curr; | |
} | |
} | |
void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) | |
{ | |
char *base = basecfg(cfgfile); | |
image **alphabet = load_alphabet(); | |
printf("Classifier Demo\n"); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
list *options = read_data_cfg(datacfg); | |
srand(2222222); | |
int w = 1280; | |
int h = 720; | |
void * cap = open_video_stream(filename, cam_index, w, h, 0); | |
int top = option_find_int(options, "top", 1); | |
char *label_list = option_find_str(options, "labels", 0); | |
char *name_list = option_find_str(options, "names", label_list); | |
char **names = get_labels(name_list); | |
int *indexes = calloc(top, sizeof(int)); | |
if(!cap) error("Couldn't connect to webcam.\n"); | |
float fps = 0; | |
int i; | |
while(1){ | |
struct timeval tval_before, tval_after, tval_result; | |
gettimeofday(&tval_before, NULL); | |
image in = get_image_from_stream(cap); | |
//image in_s = resize_image(in, net->w, net->h); | |
image in_s = letterbox_image(in, net->w, net->h); | |
float *predictions = network_predict(net, in_s.data); | |
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1); | |
top_predictions(net, top, indexes); | |
printf("\033[2J"); | |
printf("\033[1;1H"); | |
printf("\nFPS:%.0f\n",fps); | |
int lh = in.h*.03; | |
int toph = 3*lh; | |
float rgb[3] = {1,1,1}; | |
for(i = 0; i < top; ++i){ | |
printf("%d\n", toph); | |
int index = indexes[i]; | |
printf("%.1f%%: %s\n", predictions[index]*100, names[index]); | |
char buff[1024]; | |
sprintf(buff, "%3.1f%%: %s\n", predictions[index]*100, names[index]); | |
image label = get_label(alphabet, buff, lh); | |
draw_label(in, toph, lh, label, rgb); | |
toph += 2*lh; | |
free_image(label); | |
} | |
show_image(in, base, 10); | |
free_image(in_s); | |
free_image(in); | |
gettimeofday(&tval_after, NULL); | |
timersub(&tval_after, &tval_before, &tval_result); | |
float curr = 1000000.f/((long int)tval_result.tv_usec); | |
fps = .9*fps + .1*curr; | |
} | |
} | |
void run_classifier(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); | |
int ngpus; | |
int *gpus = read_intlist(gpu_list, &ngpus, gpu_index); | |
int cam_index = find_int_arg(argc, argv, "-c", 0); | |
int top = find_int_arg(argc, argv, "-t", 0); | |
int clear = find_arg(argc, argv, "-clear"); | |
char *data = argv[3]; | |
char *cfg = argv[4]; | |
char *weights = (argc > 5) ? argv[5] : 0; | |
char *filename = (argc > 6) ? argv[6]: 0; | |
char *layer_s = (argc > 7) ? argv[7]: 0; | |
int layer = layer_s ? atoi(layer_s) : -1; | |
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); | |
else if(0==strcmp(argv[2], "fout")) file_output_classifier(data, cfg, weights, filename); | |
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); | |
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear); | |
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); | |
else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); | |
else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); | |
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); | |
else if(0==strcmp(argv[2], "csv")) csv_classifier(data, cfg, weights); | |
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); | |
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights); | |
else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); | |
else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); | |
else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights); | |
else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); | |
} | |