yolov2 / app.py
till-onethousand's picture
.
5b30004
raw
history blame
1.22 kB
import os
import gradio as gr
import PIL.Image as Image
from ultralytics import ASSETS, YOLO
model = None
def predict_image(img, conf_threshold, iou_threshold, model_name):
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
os.chdir('./model')
os.system(f'./darknet detect cfg/yolov2.cfg yolov2.weights data/dog.jpg')
return './model/predictions.jpg'
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Radio(choices=["yolo11n", "yolo11s", "yolo11n-seg", "yolo11s-seg", "yolo11n-pose", "yolo11s-pose"], label="Model Name", value="yolo11n"),
],
outputs=gr.Image(type="filepath", label="Result"),
title="Ultralytics Gradio Application 🚀",
description="Upload images for inference. The Ultralytics YOLO11n model is used by default.",
examples=[
[ASSETS / "bus.jpg", 0.25, 0.45, "yolo11n.pt"],
[ASSETS / "zidane.jpg", 0.25, 0.45, "yolo11n.pt"],
],
)
iface.launch(share=True)