Spaces:
Sleeping
Sleeping
dropout_layer make_dropout_layer(int batch, int inputs, float probability) | |
{ | |
dropout_layer l = {0}; | |
l.type = DROPOUT; | |
l.probability = probability; | |
l.inputs = inputs; | |
l.outputs = inputs; | |
l.batch = batch; | |
l.rand = calloc(inputs*batch, sizeof(float)); | |
l.scale = 1./(1.-probability); | |
l.forward = forward_dropout_layer; | |
l.backward = backward_dropout_layer; | |
l.forward_gpu = forward_dropout_layer_gpu; | |
l.backward_gpu = backward_dropout_layer_gpu; | |
l.rand_gpu = cuda_make_array(l.rand, inputs*batch); | |
fprintf(stderr, "dropout p = %.2f %4d -> %4d\n", probability, inputs, inputs); | |
return l; | |
} | |
void resize_dropout_layer(dropout_layer *l, int inputs) | |
{ | |
l->rand = realloc(l->rand, l->inputs*l->batch*sizeof(float)); | |
cuda_free(l->rand_gpu); | |
l->rand_gpu = cuda_make_array(l->rand, inputs*l->batch); | |
} | |
void forward_dropout_layer(dropout_layer l, network net) | |
{ | |
int i; | |
if (!net.train) return; | |
for(i = 0; i < l.batch * l.inputs; ++i){ | |
float r = rand_uniform(0, 1); | |
l.rand[i] = r; | |
if(r < l.probability) net.input[i] = 0; | |
else net.input[i] *= l.scale; | |
} | |
} | |
void backward_dropout_layer(dropout_layer l, network net) | |
{ | |
int i; | |
if(!net.delta) return; | |
for(i = 0; i < l.batch * l.inputs; ++i){ | |
float r = l.rand[i]; | |
if(r < l.probability) net.delta[i] = 0; | |
else net.delta[i] *= l.scale; | |
} | |
} | |