yolov2 / model /src /deconvolutional_layer.c
till-onethousand's picture
model
181d94d
raw
history blame
9.79 kB
#include "deconvolutional_layer.h"
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "utils.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include <stdio.h>
#include <time.h>
static size_t get_workspace_size(layer l){
return (size_t)l.h*l.w*l.size*l.size*l.n*sizeof(float);
}
void bilinear_init(layer l)
{
int i,j,f;
float center = (l.size-1) / 2.;
for(f = 0; f < l.n; ++f){
for(j = 0; j < l.size; ++j){
for(i = 0; i < l.size; ++i){
float val = (1 - fabs(i - center)) * (1 - fabs(j - center));
int c = f%l.c;
int ind = f*l.size*l.size*l.c + c*l.size*l.size + j*l.size + i;
l.weights[ind] = val;
}
}
}
}
layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int adam)
{
int i;
layer l = {0};
l.type = DECONVOLUTIONAL;
l.h = h;
l.w = w;
l.c = c;
l.n = n;
l.batch = batch;
l.stride = stride;
l.size = size;
l.nweights = c*n*size*size;
l.nbiases = n;
l.weights = calloc(c*n*size*size, sizeof(float));
l.weight_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
//float scale = n/(size*size*c);
//printf("scale: %f\n", scale);
float scale = .02;
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal();
//bilinear_init(l);
for(i = 0; i < n; ++i){
l.biases[i] = 0;
}
l.pad = padding;
l.out_h = (l.h - 1) * l.stride + l.size - 2*l.pad;
l.out_w = (l.w - 1) * l.stride + l.size - 2*l.pad;
l.out_c = n;
l.outputs = l.out_w * l.out_h * l.out_c;
l.inputs = l.w * l.h * l.c;
scal_cpu(l.nweights, (float)l.out_w*l.out_h/(l.w*l.h), l.weights, 1);
l.output = calloc(l.batch*l.outputs, sizeof(float));
l.delta = calloc(l.batch*l.outputs, sizeof(float));
l.forward = forward_deconvolutional_layer;
l.backward = backward_deconvolutional_layer;
l.update = update_deconvolutional_layer;
l.batch_normalize = batch_normalize;
if(batch_normalize){
l.scales = calloc(n, sizeof(float));
l.scale_updates = calloc(n, sizeof(float));
for(i = 0; i < n; ++i){
l.scales[i] = 1;
}
l.mean = calloc(n, sizeof(float));
l.variance = calloc(n, sizeof(float));
l.mean_delta = calloc(n, sizeof(float));
l.variance_delta = calloc(n, sizeof(float));
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
l.x = calloc(l.batch*l.outputs, sizeof(float));
l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
}
if(adam){
l.m = calloc(c*n*size*size, sizeof(float));
l.v = calloc(c*n*size*size, sizeof(float));
l.bias_m = calloc(n, sizeof(float));
l.scale_m = calloc(n, sizeof(float));
l.bias_v = calloc(n, sizeof(float));
l.scale_v = calloc(n, sizeof(float));
}
#ifdef GPU
l.forward_gpu = forward_deconvolutional_layer_gpu;
l.backward_gpu = backward_deconvolutional_layer_gpu;
l.update_gpu = update_deconvolutional_layer_gpu;
if(gpu_index >= 0){
if (adam) {
l.m_gpu = cuda_make_array(l.m, c*n*size*size);
l.v_gpu = cuda_make_array(l.v, c*n*size*size);
l.bias_m_gpu = cuda_make_array(l.bias_m, n);
l.bias_v_gpu = cuda_make_array(l.bias_v, n);
l.scale_m_gpu = cuda_make_array(l.scale_m, n);
l.scale_v_gpu = cuda_make_array(l.scale_v, n);
}
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
l.delta_gpu = cuda_make_array(l.delta, l.batch*l.out_h*l.out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*l.out_h*l.out_w*n);
if(batch_normalize){
l.mean_gpu = cuda_make_array(0, n);
l.variance_gpu = cuda_make_array(0, n);
l.rolling_mean_gpu = cuda_make_array(0, n);
l.rolling_variance_gpu = cuda_make_array(0, n);
l.mean_delta_gpu = cuda_make_array(0, n);
l.variance_delta_gpu = cuda_make_array(0, n);
l.scales_gpu = cuda_make_array(l.scales, n);
l.scale_updates_gpu = cuda_make_array(0, n);
l.x_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n);
l.x_norm_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n);
}
}
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1);
#endif
#endif
l.activation = activation;
l.workspace_size = get_workspace_size(l);
fprintf(stderr, "deconv%5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
return l;
}
void denormalize_deconvolutional_layer(layer l)
{
int i, j;
for(i = 0; i < l.n; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
for(j = 0; j < l.c*l.size*l.size; ++j){
l.weights[i*l.c*l.size*l.size + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
l.scales[i] = 1;
l.rolling_mean[i] = 0;
l.rolling_variance[i] = 1;
}
}
void resize_deconvolutional_layer(layer *l, int h, int w)
{
l->h = h;
l->w = w;
l->out_h = (l->h - 1) * l->stride + l->size - 2*l->pad;
l->out_w = (l->w - 1) * l->stride + l->size - 2*l->pad;
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->w * l->h * l->c;
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
if(l->batch_normalize){
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
}
#ifdef GPU
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
if(l->batch_normalize){
cuda_free(l->x_gpu);
cuda_free(l->x_norm_gpu);
l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
}
#ifdef CUDNN
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
#endif
#endif
l->workspace_size = get_workspace_size(*l);
}
void forward_deconvolutional_layer(const layer l, network net)
{
int i;
int m = l.size*l.size*l.n;
int n = l.h*l.w;
int k = l.c;
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
for(i = 0; i < l.batch; ++i){
float *a = l.weights;
float *b = net.input + i*l.c*l.h*l.w;
float *c = net.workspace;
gemm_cpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
col2im_cpu(net.workspace, l.out_c, l.out_h, l.out_w, l.size, l.stride, l.pad, l.output+i*l.outputs);
}
if (l.batch_normalize) {
forward_batchnorm_layer(l, net);
} else {
add_bias(l.output, l.biases, l.batch, l.n, l.out_w*l.out_h);
}
activate_array(l.output, l.batch*l.n*l.out_w*l.out_h, l.activation);
}
void backward_deconvolutional_layer(layer l, network net)
{
int i;
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
if(l.batch_normalize){
backward_batchnorm_layer(l, net);
} else {
backward_bias(l.bias_updates, l.delta, l.batch, l.n, l.out_w*l.out_h);
}
//if(net.delta) memset(net.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
for(i = 0; i < l.batch; ++i){
int m = l.c;
int n = l.size*l.size*l.n;
int k = l.h*l.w;
float *a = net.input + i*m*k;
float *b = net.workspace;
float *c = l.weight_updates;
im2col_cpu(l.delta + i*l.outputs, l.out_c, l.out_h, l.out_w,
l.size, l.stride, l.pad, b);
gemm_cpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(net.delta){
int m = l.c;
int n = l.h*l.w;
int k = l.size*l.size*l.n;
float *a = l.weights;
float *b = net.workspace;
float *c = net.delta + i*n*m;
gemm_cpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
}
}
void update_deconvolutional_layer(layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
int size = l.size*l.size*l.c*l.n;
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.n, momentum, l.bias_updates, 1);
if(l.scales){
axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
scal_cpu(l.n, momentum, l.scale_updates, 1);
}
axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
scal_cpu(size, momentum, l.weight_updates, 1);
}