Spaces:
Sleeping
Sleeping
static size_t get_workspace_size(layer l){ | |
return (size_t)l.h*l.w*l.size*l.size*l.n*sizeof(float); | |
} | |
void bilinear_init(layer l) | |
{ | |
int i,j,f; | |
float center = (l.size-1) / 2.; | |
for(f = 0; f < l.n; ++f){ | |
for(j = 0; j < l.size; ++j){ | |
for(i = 0; i < l.size; ++i){ | |
float val = (1 - fabs(i - center)) * (1 - fabs(j - center)); | |
int c = f%l.c; | |
int ind = f*l.size*l.size*l.c + c*l.size*l.size + j*l.size + i; | |
l.weights[ind] = val; | |
} | |
} | |
} | |
} | |
layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int adam) | |
{ | |
int i; | |
layer l = {0}; | |
l.type = DECONVOLUTIONAL; | |
l.h = h; | |
l.w = w; | |
l.c = c; | |
l.n = n; | |
l.batch = batch; | |
l.stride = stride; | |
l.size = size; | |
l.nweights = c*n*size*size; | |
l.nbiases = n; | |
l.weights = calloc(c*n*size*size, sizeof(float)); | |
l.weight_updates = calloc(c*n*size*size, sizeof(float)); | |
l.biases = calloc(n, sizeof(float)); | |
l.bias_updates = calloc(n, sizeof(float)); | |
//float scale = n/(size*size*c); | |
//printf("scale: %f\n", scale); | |
float scale = .02; | |
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal(); | |
//bilinear_init(l); | |
for(i = 0; i < n; ++i){ | |
l.biases[i] = 0; | |
} | |
l.pad = padding; | |
l.out_h = (l.h - 1) * l.stride + l.size - 2*l.pad; | |
l.out_w = (l.w - 1) * l.stride + l.size - 2*l.pad; | |
l.out_c = n; | |
l.outputs = l.out_w * l.out_h * l.out_c; | |
l.inputs = l.w * l.h * l.c; | |
scal_cpu(l.nweights, (float)l.out_w*l.out_h/(l.w*l.h), l.weights, 1); | |
l.output = calloc(l.batch*l.outputs, sizeof(float)); | |
l.delta = calloc(l.batch*l.outputs, sizeof(float)); | |
l.forward = forward_deconvolutional_layer; | |
l.backward = backward_deconvolutional_layer; | |
l.update = update_deconvolutional_layer; | |
l.batch_normalize = batch_normalize; | |
if(batch_normalize){ | |
l.scales = calloc(n, sizeof(float)); | |
l.scale_updates = calloc(n, sizeof(float)); | |
for(i = 0; i < n; ++i){ | |
l.scales[i] = 1; | |
} | |
l.mean = calloc(n, sizeof(float)); | |
l.variance = calloc(n, sizeof(float)); | |
l.mean_delta = calloc(n, sizeof(float)); | |
l.variance_delta = calloc(n, sizeof(float)); | |
l.rolling_mean = calloc(n, sizeof(float)); | |
l.rolling_variance = calloc(n, sizeof(float)); | |
l.x = calloc(l.batch*l.outputs, sizeof(float)); | |
l.x_norm = calloc(l.batch*l.outputs, sizeof(float)); | |
} | |
if(adam){ | |
l.m = calloc(c*n*size*size, sizeof(float)); | |
l.v = calloc(c*n*size*size, sizeof(float)); | |
l.bias_m = calloc(n, sizeof(float)); | |
l.scale_m = calloc(n, sizeof(float)); | |
l.bias_v = calloc(n, sizeof(float)); | |
l.scale_v = calloc(n, sizeof(float)); | |
} | |
l.forward_gpu = forward_deconvolutional_layer_gpu; | |
l.backward_gpu = backward_deconvolutional_layer_gpu; | |
l.update_gpu = update_deconvolutional_layer_gpu; | |
if(gpu_index >= 0){ | |
if (adam) { | |
l.m_gpu = cuda_make_array(l.m, c*n*size*size); | |
l.v_gpu = cuda_make_array(l.v, c*n*size*size); | |
l.bias_m_gpu = cuda_make_array(l.bias_m, n); | |
l.bias_v_gpu = cuda_make_array(l.bias_v, n); | |
l.scale_m_gpu = cuda_make_array(l.scale_m, n); | |
l.scale_v_gpu = cuda_make_array(l.scale_v, n); | |
} | |
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); | |
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); | |
l.biases_gpu = cuda_make_array(l.biases, n); | |
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); | |
l.delta_gpu = cuda_make_array(l.delta, l.batch*l.out_h*l.out_w*n); | |
l.output_gpu = cuda_make_array(l.output, l.batch*l.out_h*l.out_w*n); | |
if(batch_normalize){ | |
l.mean_gpu = cuda_make_array(0, n); | |
l.variance_gpu = cuda_make_array(0, n); | |
l.rolling_mean_gpu = cuda_make_array(0, n); | |
l.rolling_variance_gpu = cuda_make_array(0, n); | |
l.mean_delta_gpu = cuda_make_array(0, n); | |
l.variance_delta_gpu = cuda_make_array(0, n); | |
l.scales_gpu = cuda_make_array(l.scales, n); | |
l.scale_updates_gpu = cuda_make_array(0, n); | |
l.x_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n); | |
l.x_norm_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n); | |
} | |
} | |
cudnnCreateTensorDescriptor(&l.dstTensorDesc); | |
cudnnCreateTensorDescriptor(&l.normTensorDesc); | |
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); | |
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1); | |
l.activation = activation; | |
l.workspace_size = get_workspace_size(l); | |
fprintf(stderr, "deconv%5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); | |
return l; | |
} | |
void denormalize_deconvolutional_layer(layer l) | |
{ | |
int i, j; | |
for(i = 0; i < l.n; ++i){ | |
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); | |
for(j = 0; j < l.c*l.size*l.size; ++j){ | |
l.weights[i*l.c*l.size*l.size + j] *= scale; | |
} | |
l.biases[i] -= l.rolling_mean[i] * scale; | |
l.scales[i] = 1; | |
l.rolling_mean[i] = 0; | |
l.rolling_variance[i] = 1; | |
} | |
} | |
void resize_deconvolutional_layer(layer *l, int h, int w) | |
{ | |
l->h = h; | |
l->w = w; | |
l->out_h = (l->h - 1) * l->stride + l->size - 2*l->pad; | |
l->out_w = (l->w - 1) * l->stride + l->size - 2*l->pad; | |
l->outputs = l->out_h * l->out_w * l->out_c; | |
l->inputs = l->w * l->h * l->c; | |
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); | |
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); | |
if(l->batch_normalize){ | |
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float)); | |
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float)); | |
} | |
cuda_free(l->delta_gpu); | |
cuda_free(l->output_gpu); | |
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); | |
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); | |
if(l->batch_normalize){ | |
cuda_free(l->x_gpu); | |
cuda_free(l->x_norm_gpu); | |
l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); | |
l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); | |
} | |
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); | |
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); | |
l->workspace_size = get_workspace_size(*l); | |
} | |
void forward_deconvolutional_layer(const layer l, network net) | |
{ | |
int i; | |
int m = l.size*l.size*l.n; | |
int n = l.h*l.w; | |
int k = l.c; | |
fill_cpu(l.outputs*l.batch, 0, l.output, 1); | |
for(i = 0; i < l.batch; ++i){ | |
float *a = l.weights; | |
float *b = net.input + i*l.c*l.h*l.w; | |
float *c = net.workspace; | |
gemm_cpu(1,0,m,n,k,1,a,m,b,n,0,c,n); | |
col2im_cpu(net.workspace, l.out_c, l.out_h, l.out_w, l.size, l.stride, l.pad, l.output+i*l.outputs); | |
} | |
if (l.batch_normalize) { | |
forward_batchnorm_layer(l, net); | |
} else { | |
add_bias(l.output, l.biases, l.batch, l.n, l.out_w*l.out_h); | |
} | |
activate_array(l.output, l.batch*l.n*l.out_w*l.out_h, l.activation); | |
} | |
void backward_deconvolutional_layer(layer l, network net) | |
{ | |
int i; | |
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); | |
if(l.batch_normalize){ | |
backward_batchnorm_layer(l, net); | |
} else { | |
backward_bias(l.bias_updates, l.delta, l.batch, l.n, l.out_w*l.out_h); | |
} | |
//if(net.delta) memset(net.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float)); | |
for(i = 0; i < l.batch; ++i){ | |
int m = l.c; | |
int n = l.size*l.size*l.n; | |
int k = l.h*l.w; | |
float *a = net.input + i*m*k; | |
float *b = net.workspace; | |
float *c = l.weight_updates; | |
im2col_cpu(l.delta + i*l.outputs, l.out_c, l.out_h, l.out_w, | |
l.size, l.stride, l.pad, b); | |
gemm_cpu(0,1,m,n,k,1,a,k,b,k,1,c,n); | |
if(net.delta){ | |
int m = l.c; | |
int n = l.h*l.w; | |
int k = l.size*l.size*l.n; | |
float *a = l.weights; | |
float *b = net.workspace; | |
float *c = net.delta + i*n*m; | |
gemm_cpu(0,0,m,n,k,1,a,k,b,n,1,c,n); | |
} | |
} | |
} | |
void update_deconvolutional_layer(layer l, update_args a) | |
{ | |
float learning_rate = a.learning_rate*l.learning_rate_scale; | |
float momentum = a.momentum; | |
float decay = a.decay; | |
int batch = a.batch; | |
int size = l.size*l.size*l.c*l.n; | |
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); | |
scal_cpu(l.n, momentum, l.bias_updates, 1); | |
if(l.scales){ | |
axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1); | |
scal_cpu(l.n, momentum, l.scale_updates, 1); | |
} | |
axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); | |
axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); | |
scal_cpu(size, momentum, l.weight_updates, 1); | |
} | |