Spaces:
Sleeping
Sleeping
layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam) | |
{ | |
int i; | |
layer l = {0}; | |
l.learning_rate_scale = 1; | |
l.type = CONNECTED; | |
l.inputs = inputs; | |
l.outputs = outputs; | |
l.batch=batch; | |
l.batch_normalize = batch_normalize; | |
l.h = 1; | |
l.w = 1; | |
l.c = inputs; | |
l.out_h = 1; | |
l.out_w = 1; | |
l.out_c = outputs; | |
l.output = calloc(batch*outputs, sizeof(float)); | |
l.delta = calloc(batch*outputs, sizeof(float)); | |
l.weight_updates = calloc(inputs*outputs, sizeof(float)); | |
l.bias_updates = calloc(outputs, sizeof(float)); | |
l.weights = calloc(outputs*inputs, sizeof(float)); | |
l.biases = calloc(outputs, sizeof(float)); | |
l.forward = forward_connected_layer; | |
l.backward = backward_connected_layer; | |
l.update = update_connected_layer; | |
//float scale = 1./sqrt(inputs); | |
float scale = sqrt(2./inputs); | |
for(i = 0; i < outputs*inputs; ++i){ | |
l.weights[i] = scale*rand_uniform(-1, 1); | |
} | |
for(i = 0; i < outputs; ++i){ | |
l.biases[i] = 0; | |
} | |
if(adam){ | |
l.m = calloc(l.inputs*l.outputs, sizeof(float)); | |
l.v = calloc(l.inputs*l.outputs, sizeof(float)); | |
l.bias_m = calloc(l.outputs, sizeof(float)); | |
l.scale_m = calloc(l.outputs, sizeof(float)); | |
l.bias_v = calloc(l.outputs, sizeof(float)); | |
l.scale_v = calloc(l.outputs, sizeof(float)); | |
} | |
if(batch_normalize){ | |
l.scales = calloc(outputs, sizeof(float)); | |
l.scale_updates = calloc(outputs, sizeof(float)); | |
for(i = 0; i < outputs; ++i){ | |
l.scales[i] = 1; | |
} | |
l.mean = calloc(outputs, sizeof(float)); | |
l.mean_delta = calloc(outputs, sizeof(float)); | |
l.variance = calloc(outputs, sizeof(float)); | |
l.variance_delta = calloc(outputs, sizeof(float)); | |
l.rolling_mean = calloc(outputs, sizeof(float)); | |
l.rolling_variance = calloc(outputs, sizeof(float)); | |
l.x = calloc(batch*outputs, sizeof(float)); | |
l.x_norm = calloc(batch*outputs, sizeof(float)); | |
} | |
l.forward_gpu = forward_connected_layer_gpu; | |
l.backward_gpu = backward_connected_layer_gpu; | |
l.update_gpu = update_connected_layer_gpu; | |
l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); | |
l.biases_gpu = cuda_make_array(l.biases, outputs); | |
l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); | |
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); | |
l.output_gpu = cuda_make_array(l.output, outputs*batch); | |
l.delta_gpu = cuda_make_array(l.delta, outputs*batch); | |
if (adam) { | |
l.m_gpu = cuda_make_array(0, inputs*outputs); | |
l.v_gpu = cuda_make_array(0, inputs*outputs); | |
l.bias_m_gpu = cuda_make_array(0, outputs); | |
l.bias_v_gpu = cuda_make_array(0, outputs); | |
l.scale_m_gpu = cuda_make_array(0, outputs); | |
l.scale_v_gpu = cuda_make_array(0, outputs); | |
} | |
if(batch_normalize){ | |
l.mean_gpu = cuda_make_array(l.mean, outputs); | |
l.variance_gpu = cuda_make_array(l.variance, outputs); | |
l.rolling_mean_gpu = cuda_make_array(l.mean, outputs); | |
l.rolling_variance_gpu = cuda_make_array(l.variance, outputs); | |
l.mean_delta_gpu = cuda_make_array(l.mean, outputs); | |
l.variance_delta_gpu = cuda_make_array(l.variance, outputs); | |
l.scales_gpu = cuda_make_array(l.scales, outputs); | |
l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs); | |
l.x_gpu = cuda_make_array(l.output, l.batch*outputs); | |
l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs); | |
cudnnCreateTensorDescriptor(&l.normTensorDesc); | |
cudnnCreateTensorDescriptor(&l.dstTensorDesc); | |
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); | |
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1); | |
} | |
l.activation = activation; | |
fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs); | |
return l; | |
} | |
void update_connected_layer(layer l, update_args a) | |
{ | |
float learning_rate = a.learning_rate*l.learning_rate_scale; | |
float momentum = a.momentum; | |
float decay = a.decay; | |
int batch = a.batch; | |
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); | |
scal_cpu(l.outputs, momentum, l.bias_updates, 1); | |
if(l.batch_normalize){ | |
axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1); | |
scal_cpu(l.outputs, momentum, l.scale_updates, 1); | |
} | |
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); | |
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); | |
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); | |
} | |
void forward_connected_layer(layer l, network net) | |
{ | |
fill_cpu(l.outputs*l.batch, 0, l.output, 1); | |
int m = l.batch; | |
int k = l.inputs; | |
int n = l.outputs; | |
float *a = net.input; | |
float *b = l.weights; | |
float *c = l.output; | |
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); | |
if(l.batch_normalize){ | |
forward_batchnorm_layer(l, net); | |
} else { | |
add_bias(l.output, l.biases, l.batch, l.outputs, 1); | |
} | |
activate_array(l.output, l.outputs*l.batch, l.activation); | |
} | |
void backward_connected_layer(layer l, network net) | |
{ | |
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); | |
if(l.batch_normalize){ | |
backward_batchnorm_layer(l, net); | |
} else { | |
backward_bias(l.bias_updates, l.delta, l.batch, l.outputs, 1); | |
} | |
int m = l.outputs; | |
int k = l.batch; | |
int n = l.inputs; | |
float *a = l.delta; | |
float *b = net.input; | |
float *c = l.weight_updates; | |
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); | |
m = l.batch; | |
k = l.outputs; | |
n = l.inputs; | |
a = l.delta; | |
b = l.weights; | |
c = net.delta; | |
if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); | |
} | |
void denormalize_connected_layer(layer l) | |
{ | |
int i, j; | |
for(i = 0; i < l.outputs; ++i){ | |
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001); | |
for(j = 0; j < l.inputs; ++j){ | |
l.weights[i*l.inputs + j] *= scale; | |
} | |
l.biases[i] -= l.rolling_mean[i] * scale; | |
l.scales[i] = 1; | |
l.rolling_mean[i] = 0; | |
l.rolling_variance[i] = 1; | |
} | |
} | |
void statistics_connected_layer(layer l) | |
{ | |
if(l.batch_normalize){ | |
printf("Scales "); | |
print_statistics(l.scales, l.outputs); | |
/* | |
printf("Rolling Mean "); | |
print_statistics(l.rolling_mean, l.outputs); | |
printf("Rolling Variance "); | |
print_statistics(l.rolling_variance, l.outputs); | |
*/ | |
} | |
printf("Biases "); | |
print_statistics(l.biases, l.outputs); | |
printf("Weights "); | |
print_statistics(l.weights, l.outputs); | |
} | |
void pull_connected_layer(layer l) | |
{ | |
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); | |
cuda_pull_array(l.biases_gpu, l.biases, l.outputs); | |
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); | |
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); | |
if (l.batch_normalize){ | |
cuda_pull_array(l.scales_gpu, l.scales, l.outputs); | |
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); | |
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); | |
} | |
} | |
void push_connected_layer(layer l) | |
{ | |
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); | |
cuda_push_array(l.biases_gpu, l.biases, l.outputs); | |
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); | |
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); | |
if (l.batch_normalize){ | |
cuda_push_array(l.scales_gpu, l.scales, l.outputs); | |
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); | |
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); | |
} | |
} | |
void update_connected_layer_gpu(layer l, update_args a) | |
{ | |
float learning_rate = a.learning_rate*l.learning_rate_scale; | |
float momentum = a.momentum; | |
float decay = a.decay; | |
int batch = a.batch; | |
if(a.adam){ | |
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.inputs*l.outputs, batch, a.t); | |
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t); | |
if(l.scales_gpu){ | |
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t); | |
} | |
}else{ | |
axpy_gpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); | |
scal_gpu(l.outputs, momentum, l.bias_updates_gpu, 1); | |
if(l.batch_normalize){ | |
axpy_gpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); | |
scal_gpu(l.outputs, momentum, l.scale_updates_gpu, 1); | |
} | |
axpy_gpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); | |
axpy_gpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); | |
scal_gpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); | |
} | |
} | |
void forward_connected_layer_gpu(layer l, network net) | |
{ | |
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1); | |
int m = l.batch; | |
int k = l.inputs; | |
int n = l.outputs; | |
float * a = net.input_gpu; | |
float * b = l.weights_gpu; | |
float * c = l.output_gpu; | |
gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n); | |
if (l.batch_normalize) { | |
forward_batchnorm_layer_gpu(l, net); | |
} else { | |
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1); | |
} | |
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation); | |
} | |
void backward_connected_layer_gpu(layer l, network net) | |
{ | |
constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1); | |
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); | |
if(l.batch_normalize){ | |
backward_batchnorm_layer_gpu(l, net); | |
} else { | |
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.outputs, 1); | |
} | |
int m = l.outputs; | |
int k = l.batch; | |
int n = l.inputs; | |
float * a = l.delta_gpu; | |
float * b = net.input_gpu; | |
float * c = l.weight_updates_gpu; | |
gemm_gpu(1,0,m,n,k,1,a,m,b,n,1,c,n); | |
m = l.batch; | |
k = l.outputs; | |
n = l.inputs; | |
a = l.delta_gpu; | |
b = l.weights_gpu; | |
c = net.delta_gpu; | |
if(c) gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n); | |
} | |