yolov2 / model /src /connected_layer.c
till-onethousand's picture
model
181d94d
raw
history blame
11.1 kB
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include "gemm.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam)
{
int i;
layer l = {0};
l.learning_rate_scale = 1;
l.type = CONNECTED;
l.inputs = inputs;
l.outputs = outputs;
l.batch=batch;
l.batch_normalize = batch_normalize;
l.h = 1;
l.w = 1;
l.c = inputs;
l.out_h = 1;
l.out_w = 1;
l.out_c = outputs;
l.output = calloc(batch*outputs, sizeof(float));
l.delta = calloc(batch*outputs, sizeof(float));
l.weight_updates = calloc(inputs*outputs, sizeof(float));
l.bias_updates = calloc(outputs, sizeof(float));
l.weights = calloc(outputs*inputs, sizeof(float));
l.biases = calloc(outputs, sizeof(float));
l.forward = forward_connected_layer;
l.backward = backward_connected_layer;
l.update = update_connected_layer;
//float scale = 1./sqrt(inputs);
float scale = sqrt(2./inputs);
for(i = 0; i < outputs*inputs; ++i){
l.weights[i] = scale*rand_uniform(-1, 1);
}
for(i = 0; i < outputs; ++i){
l.biases[i] = 0;
}
if(adam){
l.m = calloc(l.inputs*l.outputs, sizeof(float));
l.v = calloc(l.inputs*l.outputs, sizeof(float));
l.bias_m = calloc(l.outputs, sizeof(float));
l.scale_m = calloc(l.outputs, sizeof(float));
l.bias_v = calloc(l.outputs, sizeof(float));
l.scale_v = calloc(l.outputs, sizeof(float));
}
if(batch_normalize){
l.scales = calloc(outputs, sizeof(float));
l.scale_updates = calloc(outputs, sizeof(float));
for(i = 0; i < outputs; ++i){
l.scales[i] = 1;
}
l.mean = calloc(outputs, sizeof(float));
l.mean_delta = calloc(outputs, sizeof(float));
l.variance = calloc(outputs, sizeof(float));
l.variance_delta = calloc(outputs, sizeof(float));
l.rolling_mean = calloc(outputs, sizeof(float));
l.rolling_variance = calloc(outputs, sizeof(float));
l.x = calloc(batch*outputs, sizeof(float));
l.x_norm = calloc(batch*outputs, sizeof(float));
}
#ifdef GPU
l.forward_gpu = forward_connected_layer_gpu;
l.backward_gpu = backward_connected_layer_gpu;
l.update_gpu = update_connected_layer_gpu;
l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
l.biases_gpu = cuda_make_array(l.biases, outputs);
l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs);
l.output_gpu = cuda_make_array(l.output, outputs*batch);
l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
if (adam) {
l.m_gpu = cuda_make_array(0, inputs*outputs);
l.v_gpu = cuda_make_array(0, inputs*outputs);
l.bias_m_gpu = cuda_make_array(0, outputs);
l.bias_v_gpu = cuda_make_array(0, outputs);
l.scale_m_gpu = cuda_make_array(0, outputs);
l.scale_v_gpu = cuda_make_array(0, outputs);
}
if(batch_normalize){
l.mean_gpu = cuda_make_array(l.mean, outputs);
l.variance_gpu = cuda_make_array(l.variance, outputs);
l.rolling_mean_gpu = cuda_make_array(l.mean, outputs);
l.rolling_variance_gpu = cuda_make_array(l.variance, outputs);
l.mean_delta_gpu = cuda_make_array(l.mean, outputs);
l.variance_delta_gpu = cuda_make_array(l.variance, outputs);
l.scales_gpu = cuda_make_array(l.scales, outputs);
l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs);
l.x_gpu = cuda_make_array(l.output, l.batch*outputs);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs);
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1);
#endif
}
#endif
l.activation = activation;
fprintf(stderr, "connected %4d -> %4d\n", inputs, outputs);
return l;
}
void update_connected_layer(layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
if(l.batch_normalize){
axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
scal_cpu(l.outputs, momentum, l.scale_updates, 1);
}
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
}
void forward_connected_layer(layer l, network net)
{
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
int m = l.batch;
int k = l.inputs;
int n = l.outputs;
float *a = net.input;
float *b = l.weights;
float *c = l.output;
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(l.batch_normalize){
forward_batchnorm_layer(l, net);
} else {
add_bias(l.output, l.biases, l.batch, l.outputs, 1);
}
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_connected_layer(layer l, network net)
{
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
if(l.batch_normalize){
backward_batchnorm_layer(l, net);
} else {
backward_bias(l.bias_updates, l.delta, l.batch, l.outputs, 1);
}
int m = l.outputs;
int k = l.batch;
int n = l.inputs;
float *a = l.delta;
float *b = net.input;
float *c = l.weight_updates;
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
m = l.batch;
k = l.outputs;
n = l.inputs;
a = l.delta;
b = l.weights;
c = net.delta;
if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
void denormalize_connected_layer(layer l)
{
int i, j;
for(i = 0; i < l.outputs; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
for(j = 0; j < l.inputs; ++j){
l.weights[i*l.inputs + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
l.scales[i] = 1;
l.rolling_mean[i] = 0;
l.rolling_variance[i] = 1;
}
}
void statistics_connected_layer(layer l)
{
if(l.batch_normalize){
printf("Scales ");
print_statistics(l.scales, l.outputs);
/*
printf("Rolling Mean ");
print_statistics(l.rolling_mean, l.outputs);
printf("Rolling Variance ");
print_statistics(l.rolling_variance, l.outputs);
*/
}
printf("Biases ");
print_statistics(l.biases, l.outputs);
printf("Weights ");
print_statistics(l.weights, l.outputs);
}
#ifdef GPU
void pull_connected_layer(layer l)
{
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
if (l.batch_normalize){
cuda_pull_array(l.scales_gpu, l.scales, l.outputs);
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
}
}
void push_connected_layer(layer l)
{
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
if (l.batch_normalize){
cuda_push_array(l.scales_gpu, l.scales, l.outputs);
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
}
}
void update_connected_layer_gpu(layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
if(a.adam){
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.inputs*l.outputs, batch, a.t);
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t);
if(l.scales_gpu){
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t);
}
}else{
axpy_gpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
scal_gpu(l.outputs, momentum, l.bias_updates_gpu, 1);
if(l.batch_normalize){
axpy_gpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
scal_gpu(l.outputs, momentum, l.scale_updates_gpu, 1);
}
axpy_gpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
axpy_gpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
scal_gpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
}
}
void forward_connected_layer_gpu(layer l, network net)
{
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1);
int m = l.batch;
int k = l.inputs;
int n = l.outputs;
float * a = net.input_gpu;
float * b = l.weights_gpu;
float * c = l.output_gpu;
gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, net);
} else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1);
}
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_connected_layer_gpu(layer l, network net)
{
constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
if(l.batch_normalize){
backward_batchnorm_layer_gpu(l, net);
} else {
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.outputs, 1);
}
int m = l.outputs;
int k = l.batch;
int n = l.inputs;
float * a = l.delta_gpu;
float * b = net.input_gpu;
float * c = l.weight_updates_gpu;
gemm_gpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
m = l.batch;
k = l.outputs;
n = l.inputs;
a = l.delta_gpu;
b = l.weights_gpu;
c = net.delta_gpu;
if(c) gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
#endif