Spaces:
Sleeping
Sleeping
void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out) | |
{ | |
int b,i,j,k; | |
int out_c = c/(stride*stride); | |
for(b = 0; b < batch; ++b){ | |
for(k = 0; k < c; ++k){ | |
for(j = 0; j < h; ++j){ | |
for(i = 0; i < w; ++i){ | |
int in_index = i + w*(j + h*(k + c*b)); | |
int c2 = k % out_c; | |
int offset = k / out_c; | |
int w2 = i*stride + offset % stride; | |
int h2 = j*stride + offset / stride; | |
int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b)); | |
if(forward) out[out_index] = x[in_index]; | |
else out[in_index] = x[out_index]; | |
} | |
} | |
} | |
} | |
} | |
void flatten(float *x, int size, int layers, int batch, int forward) | |
{ | |
float *swap = calloc(size*layers*batch, sizeof(float)); | |
int i,c,b; | |
for(b = 0; b < batch; ++b){ | |
for(c = 0; c < layers; ++c){ | |
for(i = 0; i < size; ++i){ | |
int i1 = b*layers*size + c*size + i; | |
int i2 = b*layers*size + i*layers + c; | |
if (forward) swap[i2] = x[i1]; | |
else swap[i1] = x[i2]; | |
} | |
} | |
} | |
memcpy(x, swap, size*layers*batch*sizeof(float)); | |
free(swap); | |
} | |
void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); | |
} | |
} | |
void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
if(da) da[i] += dc[i] * s[i]; | |
if(db) db[i] += dc[i] * (1-s[i]); | |
ds[i] += dc[i] * (a[i] - b[i]); | |
} | |
} | |
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out) | |
{ | |
int stride = w1/w2; | |
int sample = w2/w1; | |
assert(stride == h1/h2); | |
assert(sample == h2/h1); | |
if(stride < 1) stride = 1; | |
if(sample < 1) sample = 1; | |
int minw = (w1 < w2) ? w1 : w2; | |
int minh = (h1 < h2) ? h1 : h2; | |
int minc = (c1 < c2) ? c1 : c2; | |
int i,j,k,b; | |
for(b = 0; b < batch; ++b){ | |
for(k = 0; k < minc; ++k){ | |
for(j = 0; j < minh; ++j){ | |
for(i = 0; i < minw; ++i){ | |
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); | |
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); | |
out[out_index] = s1*out[out_index] + s2*add[add_index]; | |
} | |
} | |
} | |
} | |
} | |
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) | |
{ | |
float scale = 1./(batch * spatial); | |
int i,j,k; | |
for(i = 0; i < filters; ++i){ | |
mean[i] = 0; | |
for(j = 0; j < batch; ++j){ | |
for(k = 0; k < spatial; ++k){ | |
int index = j*filters*spatial + i*spatial + k; | |
mean[i] += x[index]; | |
} | |
} | |
mean[i] *= scale; | |
} | |
} | |
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) | |
{ | |
float scale = 1./(batch * spatial - 1); | |
int i,j,k; | |
for(i = 0; i < filters; ++i){ | |
variance[i] = 0; | |
for(j = 0; j < batch; ++j){ | |
for(k = 0; k < spatial; ++k){ | |
int index = j*filters*spatial + i*spatial + k; | |
variance[i] += pow((x[index] - mean[i]), 2); | |
} | |
} | |
variance[i] *= scale; | |
} | |
} | |
void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial) | |
{ | |
int b,f,i; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < spatial; ++i){ | |
float sum = 0; | |
for(f = 0; f < filters; ++f){ | |
int index = b*filters*spatial + f*spatial + i; | |
sum += powf(x[index], 2); | |
} | |
sum = sqrtf(sum); | |
for(f = 0; f < filters; ++f){ | |
int index = b*filters*spatial + f*spatial + i; | |
x[index] /= sum; | |
dx[index] = (1 - x[index]) / sum; | |
} | |
} | |
} | |
} | |
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) | |
{ | |
int b, f, i; | |
for(b = 0; b < batch; ++b){ | |
for(f = 0; f < filters; ++f){ | |
for(i = 0; i < spatial; ++i){ | |
int index = b*filters*spatial + f*spatial + i; | |
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f); | |
} | |
} | |
} | |
} | |
void const_cpu(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; | |
} | |
void mul_cpu(int N, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX]; | |
} | |
void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA); | |
} | |
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; | |
} | |
void scal_cpu(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; | |
} | |
void fill_cpu(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; | |
} | |
void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) | |
{ | |
int i, j; | |
int index = 0; | |
for(j = 0; j < B; ++j) { | |
for(i = 0; i < NX; ++i){ | |
if(X) X[j*NX + i] += OUT[index]; | |
++index; | |
} | |
for(i = 0; i < NY; ++i){ | |
if(Y) Y[j*NY + i] += OUT[index]; | |
++index; | |
} | |
} | |
} | |
void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) | |
{ | |
int i, j; | |
int index = 0; | |
for(j = 0; j < B; ++j) { | |
for(i = 0; i < NX; ++i){ | |
OUT[index++] = X[j*NX + i]; | |
} | |
for(i = 0; i < NY; ++i){ | |
OUT[index++] = Y[j*NY + i]; | |
} | |
} | |
} | |
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; | |
} | |
void mult_add_into_cpu(int N, float *X, float *Y, float *Z) | |
{ | |
int i; | |
for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; | |
} | |
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
float diff = truth[i] - pred[i]; | |
float abs_val = fabs(diff); | |
if(abs_val < 1) { | |
error[i] = diff * diff; | |
delta[i] = diff; | |
} | |
else { | |
error[i] = 2*abs_val - 1; | |
delta[i] = (diff < 0) ? 1 : -1; | |
} | |
} | |
} | |
void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
float diff = truth[i] - pred[i]; | |
error[i] = fabs(diff); | |
delta[i] = diff > 0 ? 1 : -1; | |
} | |
} | |
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
float t = truth[i]; | |
float p = pred[i]; | |
error[i] = (t) ? -log(p) : 0; | |
delta[i] = t-p; | |
} | |
} | |
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
float t = truth[i]; | |
float p = pred[i]; | |
error[i] = -t*log(p) - (1-t)*log(1-p); | |
delta[i] = t-p; | |
} | |
} | |
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
float diff = truth[i] - pred[i]; | |
error[i] = diff * diff; | |
delta[i] = diff; | |
} | |
} | |
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i; | |
float dot = 0; | |
for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY]; | |
return dot; | |
} | |
void softmax(float *input, int n, float temp, int stride, float *output) | |
{ | |
int i; | |
float sum = 0; | |
float largest = -FLT_MAX; | |
for(i = 0; i < n; ++i){ | |
if(input[i*stride] > largest) largest = input[i*stride]; | |
} | |
for(i = 0; i < n; ++i){ | |
float e = exp(input[i*stride]/temp - largest/temp); | |
sum += e; | |
output[i*stride] = e; | |
} | |
for(i = 0; i < n; ++i){ | |
output[i*stride] /= sum; | |
} | |
} | |
void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) | |
{ | |
int g, b; | |
for(b = 0; b < batch; ++b){ | |
for(g = 0; g < groups; ++g){ | |
softmax(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset); | |
} | |
} | |
} | |
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) | |
{ | |
int i, j, k, b; | |
for(b = 0; b < batch; ++b){ | |
for(k = 0; k < c; ++k){ | |
for(j = 0; j < h*stride; ++j){ | |
for(i = 0; i < w*stride; ++i){ | |
int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride; | |
int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i; | |
if(forward) out[out_index] = scale*in[in_index]; | |
else in[in_index] += scale*out[out_index]; | |
} | |
} | |
} | |
} | |
} | |