Spaces:
Running
Running
extern "C" { | |
} | |
extern "C" void forward_deconvolutional_layer_gpu(layer l, network net) | |
{ | |
int i; | |
int m = l.size*l.size*l.n; | |
int n = l.h*l.w; | |
int k = l.c; | |
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1); | |
for(i = 0; i < l.batch; ++i){ | |
float *a = l.weights_gpu; | |
float *b = net.input_gpu + i*l.c*l.h*l.w; | |
float *c = net.workspace; | |
gemm_gpu(1,0,m,n,k,1,a,m,b,n,0,c,n); | |
col2im_gpu(net.workspace, l.out_c, l.out_h, l.out_w, l.size, l.stride, l.pad, l.output_gpu+i*l.outputs); | |
} | |
if (l.batch_normalize) { | |
forward_batchnorm_layer_gpu(l, net); | |
} else { | |
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); | |
} | |
activate_array_gpu(l.output_gpu, l.batch*l.n*l.out_w*l.out_h, l.activation); | |
} | |
extern "C" void backward_deconvolutional_layer_gpu(layer l, network net) | |
{ | |
int i; | |
//constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1); | |
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); | |
if(l.batch_normalize){ | |
backward_batchnorm_layer_gpu(l, net); | |
} else { | |
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); | |
} | |
//if(net.delta_gpu) memset(net.delta_gpu, 0, l.batch*l.h*l.w*l.c*sizeof(float)); | |
for(i = 0; i < l.batch; ++i){ | |
int m = l.c; | |
int n = l.size*l.size*l.n; | |
int k = l.h*l.w; | |
float *a = net.input_gpu + i*m*k; | |
float *b = net.workspace; | |
float *c = l.weight_updates_gpu; | |
im2col_gpu(l.delta_gpu + i*l.outputs, l.out_c, l.out_h, l.out_w, | |
l.size, l.stride, l.pad, b); | |
gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n); | |
if(net.delta_gpu){ | |
int m = l.c; | |
int n = l.h*l.w; | |
int k = l.size*l.size*l.n; | |
float *a = l.weights_gpu; | |
float *b = net.workspace; | |
float *c = net.delta_gpu + i*n*m; | |
gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n); | |
} | |
} | |
} | |
extern "C" void pull_deconvolutional_layer(layer l) | |
{ | |
cuda_pull_array(l.weights_gpu, l.weights, l.c*l.n*l.size*l.size); | |
cuda_pull_array(l.biases_gpu, l.biases, l.n); | |
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.c*l.n*l.size*l.size); | |
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n); | |
if (l.batch_normalize){ | |
cuda_pull_array(l.scales_gpu, l.scales, l.n); | |
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.n); | |
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.n); | |
} | |
} | |
extern "C" void push_deconvolutional_layer(layer l) | |
{ | |
cuda_push_array(l.weights_gpu, l.weights, l.c*l.n*l.size*l.size); | |
cuda_push_array(l.biases_gpu, l.biases, l.n); | |
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.c*l.n*l.size*l.size); | |
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); | |
if (l.batch_normalize){ | |
cuda_push_array(l.scales_gpu, l.scales, l.n); | |
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n); | |
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n); | |
} | |
} | |
void update_deconvolutional_layer_gpu(layer l, update_args a) | |
{ | |
float learning_rate = a.learning_rate*l.learning_rate_scale; | |
float momentum = a.momentum; | |
float decay = a.decay; | |
int batch = a.batch; | |
if(a.adam){ | |
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t); | |
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t); | |
if(l.scales_gpu){ | |
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t); | |
} | |
}else{ | |
axpy_gpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); | |
axpy_gpu(l.nweights, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); | |
scal_gpu(l.nweights, momentum, l.weight_updates_gpu, 1); | |
axpy_gpu(l.n, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); | |
scal_gpu(l.n, momentum, l.bias_updates_gpu, 1); | |
if(l.scales_gpu){ | |
axpy_gpu(l.n, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); | |
scal_gpu(l.n, momentum, l.scale_updates_gpu, 1); | |
} | |
} | |
} | |