Spaces:
Running
Running
static void increment_layer(layer *l, int steps) | |
{ | |
int num = l->outputs*l->batch*steps; | |
l->output += num; | |
l->delta += num; | |
l->x += num; | |
l->x_norm += num; | |
l->output_gpu += num; | |
l->delta_gpu += num; | |
l->x_gpu += num; | |
l->x_norm_gpu += num; | |
} | |
layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int steps, ACTIVATION activation, int batch_normalize) | |
{ | |
fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters); | |
batch = batch / steps; | |
layer l = {0}; | |
l.batch = batch; | |
l.type = CRNN; | |
l.steps = steps; | |
l.h = h; | |
l.w = w; | |
l.c = c; | |
l.out_h = h; | |
l.out_w = w; | |
l.out_c = output_filters; | |
l.inputs = h*w*c; | |
l.hidden = h * w * hidden_filters; | |
l.outputs = l.out_h * l.out_w * l.out_c; | |
l.state = calloc(l.hidden*batch*(steps+1), sizeof(float)); | |
l.input_layer = malloc(sizeof(layer)); | |
fprintf(stderr, "\t\t"); | |
*(l.input_layer) = make_convolutional_layer(batch*steps, h, w, c, hidden_filters, 1, 3, 1, 1, activation, batch_normalize, 0, 0, 0); | |
l.input_layer->batch = batch; | |
l.self_layer = malloc(sizeof(layer)); | |
fprintf(stderr, "\t\t"); | |
*(l.self_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, hidden_filters, 1, 3, 1, 1, activation, batch_normalize, 0, 0, 0); | |
l.self_layer->batch = batch; | |
l.output_layer = malloc(sizeof(layer)); | |
fprintf(stderr, "\t\t"); | |
*(l.output_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, output_filters, 1, 3, 1, 1, activation, batch_normalize, 0, 0, 0); | |
l.output_layer->batch = batch; | |
l.output = l.output_layer->output; | |
l.delta = l.output_layer->delta; | |
l.forward = forward_crnn_layer; | |
l.backward = backward_crnn_layer; | |
l.update = update_crnn_layer; | |
l.forward_gpu = forward_crnn_layer_gpu; | |
l.backward_gpu = backward_crnn_layer_gpu; | |
l.update_gpu = update_crnn_layer_gpu; | |
l.state_gpu = cuda_make_array(l.state, l.hidden*batch*(steps+1)); | |
l.output_gpu = l.output_layer->output_gpu; | |
l.delta_gpu = l.output_layer->delta_gpu; | |
return l; | |
} | |
void update_crnn_layer(layer l, update_args a) | |
{ | |
update_convolutional_layer(*(l.input_layer), a); | |
update_convolutional_layer(*(l.self_layer), a); | |
update_convolutional_layer(*(l.output_layer), a); | |
} | |
void forward_crnn_layer(layer l, network net) | |
{ | |
network s = net; | |
s.train = net.train; | |
int i; | |
layer input_layer = *(l.input_layer); | |
layer self_layer = *(l.self_layer); | |
layer output_layer = *(l.output_layer); | |
fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); | |
fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); | |
fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); | |
if(net.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1); | |
for (i = 0; i < l.steps; ++i) { | |
s.input = net.input; | |
forward_convolutional_layer(input_layer, s); | |
s.input = l.state; | |
forward_convolutional_layer(self_layer, s); | |
float *old_state = l.state; | |
if(net.train) l.state += l.hidden*l.batch; | |
if(l.shortcut){ | |
copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); | |
}else{ | |
fill_cpu(l.hidden * l.batch, 0, l.state, 1); | |
} | |
axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); | |
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); | |
s.input = l.state; | |
forward_convolutional_layer(output_layer, s); | |
net.input += l.inputs*l.batch; | |
increment_layer(&input_layer, 1); | |
increment_layer(&self_layer, 1); | |
increment_layer(&output_layer, 1); | |
} | |
} | |
void backward_crnn_layer(layer l, network net) | |
{ | |
network s = net; | |
int i; | |
layer input_layer = *(l.input_layer); | |
layer self_layer = *(l.self_layer); | |
layer output_layer = *(l.output_layer); | |
increment_layer(&input_layer, l.steps-1); | |
increment_layer(&self_layer, l.steps-1); | |
increment_layer(&output_layer, l.steps-1); | |
l.state += l.hidden*l.batch*l.steps; | |
for (i = l.steps-1; i >= 0; --i) { | |
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); | |
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); | |
s.input = l.state; | |
s.delta = self_layer.delta; | |
backward_convolutional_layer(output_layer, s); | |
l.state -= l.hidden*l.batch; | |
/* | |
if(i > 0){ | |
copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); | |
axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); | |
}else{ | |
fill_cpu(l.hidden * l.batch, 0, l.state, 1); | |
} | |
*/ | |
s.input = l.state; | |
s.delta = self_layer.delta - l.hidden*l.batch; | |
if (i == 0) s.delta = 0; | |
backward_convolutional_layer(self_layer, s); | |
copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); | |
if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); | |
s.input = net.input + i*l.inputs*l.batch; | |
if(net.delta) s.delta = net.delta + i*l.inputs*l.batch; | |
else s.delta = 0; | |
backward_convolutional_layer(input_layer, s); | |
increment_layer(&input_layer, -1); | |
increment_layer(&self_layer, -1); | |
increment_layer(&output_layer, -1); | |
} | |
} | |
void pull_crnn_layer(layer l) | |
{ | |
pull_convolutional_layer(*(l.input_layer)); | |
pull_convolutional_layer(*(l.self_layer)); | |
pull_convolutional_layer(*(l.output_layer)); | |
} | |
void push_crnn_layer(layer l) | |
{ | |
push_convolutional_layer(*(l.input_layer)); | |
push_convolutional_layer(*(l.self_layer)); | |
push_convolutional_layer(*(l.output_layer)); | |
} | |
void update_crnn_layer_gpu(layer l, update_args a) | |
{ | |
update_convolutional_layer_gpu(*(l.input_layer), a); | |
update_convolutional_layer_gpu(*(l.self_layer), a); | |
update_convolutional_layer_gpu(*(l.output_layer), a); | |
} | |
void forward_crnn_layer_gpu(layer l, network net) | |
{ | |
network s = net; | |
int i; | |
layer input_layer = *(l.input_layer); | |
layer self_layer = *(l.self_layer); | |
layer output_layer = *(l.output_layer); | |
fill_gpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); | |
fill_gpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); | |
fill_gpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); | |
if(net.train) fill_gpu(l.hidden * l.batch, 0, l.state_gpu, 1); | |
for (i = 0; i < l.steps; ++i) { | |
s.input_gpu = net.input_gpu; | |
forward_convolutional_layer_gpu(input_layer, s); | |
s.input_gpu = l.state_gpu; | |
forward_convolutional_layer_gpu(self_layer, s); | |
float *old_state = l.state_gpu; | |
if(net.train) l.state_gpu += l.hidden*l.batch; | |
if(l.shortcut){ | |
copy_gpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); | |
}else{ | |
fill_gpu(l.hidden * l.batch, 0, l.state_gpu, 1); | |
} | |
axpy_gpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); | |
axpy_gpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); | |
s.input_gpu = l.state_gpu; | |
forward_convolutional_layer_gpu(output_layer, s); | |
net.input_gpu += l.inputs*l.batch; | |
increment_layer(&input_layer, 1); | |
increment_layer(&self_layer, 1); | |
increment_layer(&output_layer, 1); | |
} | |
} | |
void backward_crnn_layer_gpu(layer l, network net) | |
{ | |
network s = net; | |
s.train = net.train; | |
int i; | |
layer input_layer = *(l.input_layer); | |
layer self_layer = *(l.self_layer); | |
layer output_layer = *(l.output_layer); | |
increment_layer(&input_layer, l.steps - 1); | |
increment_layer(&self_layer, l.steps - 1); | |
increment_layer(&output_layer, l.steps - 1); | |
l.state_gpu += l.hidden*l.batch*l.steps; | |
for (i = l.steps-1; i >= 0; --i) { | |
copy_gpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); | |
axpy_gpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); | |
s.input_gpu = l.state_gpu; | |
s.delta_gpu = self_layer.delta_gpu; | |
backward_convolutional_layer_gpu(output_layer, s); | |
l.state_gpu -= l.hidden*l.batch; | |
s.input_gpu = l.state_gpu; | |
s.delta_gpu = self_layer.delta_gpu - l.hidden*l.batch; | |
if (i == 0) s.delta_gpu = 0; | |
backward_convolutional_layer_gpu(self_layer, s); | |
copy_gpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); | |
if (i > 0 && l.shortcut) axpy_gpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); | |
s.input_gpu = net.input_gpu + i*l.inputs*l.batch; | |
if(net.delta_gpu) s.delta_gpu = net.delta_gpu + i*l.inputs*l.batch; | |
else s.delta_gpu = 0; | |
backward_convolutional_layer_gpu(input_layer, s); | |
increment_layer(&input_layer, -1); | |
increment_layer(&self_layer, -1); | |
increment_layer(&output_layer, -1); | |
} | |
} | |