Spaces:
Sleeping
Sleeping
COST_TYPE get_cost_type(char *s) | |
{ | |
if (strcmp(s, "seg")==0) return SEG; | |
if (strcmp(s, "sse")==0) return SSE; | |
if (strcmp(s, "masked")==0) return MASKED; | |
if (strcmp(s, "smooth")==0) return SMOOTH; | |
if (strcmp(s, "L1")==0) return L1; | |
if (strcmp(s, "wgan")==0) return WGAN; | |
fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s); | |
return SSE; | |
} | |
char *get_cost_string(COST_TYPE a) | |
{ | |
switch(a){ | |
case SEG: | |
return "seg"; | |
case SSE: | |
return "sse"; | |
case MASKED: | |
return "masked"; | |
case SMOOTH: | |
return "smooth"; | |
case L1: | |
return "L1"; | |
case WGAN: | |
return "wgan"; | |
} | |
return "sse"; | |
} | |
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale) | |
{ | |
fprintf(stderr, "cost %4d\n", inputs); | |
cost_layer l = {0}; | |
l.type = COST; | |
l.scale = scale; | |
l.batch = batch; | |
l.inputs = inputs; | |
l.outputs = inputs; | |
l.cost_type = cost_type; | |
l.delta = calloc(inputs*batch, sizeof(float)); | |
l.output = calloc(inputs*batch, sizeof(float)); | |
l.cost = calloc(1, sizeof(float)); | |
l.forward = forward_cost_layer; | |
l.backward = backward_cost_layer; | |
l.forward_gpu = forward_cost_layer_gpu; | |
l.backward_gpu = backward_cost_layer_gpu; | |
l.delta_gpu = cuda_make_array(l.output, inputs*batch); | |
l.output_gpu = cuda_make_array(l.delta, inputs*batch); | |
return l; | |
} | |
void resize_cost_layer(cost_layer *l, int inputs) | |
{ | |
l->inputs = inputs; | |
l->outputs = inputs; | |
l->delta = realloc(l->delta, inputs*l->batch*sizeof(float)); | |
l->output = realloc(l->output, inputs*l->batch*sizeof(float)); | |
cuda_free(l->delta_gpu); | |
cuda_free(l->output_gpu); | |
l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch); | |
l->output_gpu = cuda_make_array(l->output, inputs*l->batch); | |
} | |
void forward_cost_layer(cost_layer l, network net) | |
{ | |
if (!net.truth) return; | |
if(l.cost_type == MASKED){ | |
int i; | |
for(i = 0; i < l.batch*l.inputs; ++i){ | |
if(net.truth[i] == SECRET_NUM) net.input[i] = SECRET_NUM; | |
} | |
} | |
if(l.cost_type == SMOOTH){ | |
smooth_l1_cpu(l.batch*l.inputs, net.input, net.truth, l.delta, l.output); | |
}else if(l.cost_type == L1){ | |
l1_cpu(l.batch*l.inputs, net.input, net.truth, l.delta, l.output); | |
} else { | |
l2_cpu(l.batch*l.inputs, net.input, net.truth, l.delta, l.output); | |
} | |
l.cost[0] = sum_array(l.output, l.batch*l.inputs); | |
} | |
void backward_cost_layer(const cost_layer l, network net) | |
{ | |
axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, net.delta, 1); | |
} | |
void pull_cost_layer(cost_layer l) | |
{ | |
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); | |
} | |
void push_cost_layer(cost_layer l) | |
{ | |
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); | |
} | |
int float_abs_compare (const void * a, const void * b) | |
{ | |
float fa = *(const float*) a; | |
if(fa < 0) fa = -fa; | |
float fb = *(const float*) b; | |
if(fb < 0) fb = -fb; | |
return (fa > fb) - (fa < fb); | |
} | |
void forward_cost_layer_gpu(cost_layer l, network net) | |
{ | |
if (!net.truth) return; | |
if(l.smooth){ | |
scal_gpu(l.batch*l.inputs, (1-l.smooth), net.truth_gpu, 1); | |
add_gpu(l.batch*l.inputs, l.smooth * 1./l.inputs, net.truth_gpu, 1); | |
} | |
if(l.cost_type == SMOOTH){ | |
smooth_l1_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu); | |
} else if (l.cost_type == L1){ | |
l1_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu); | |
} else if (l.cost_type == WGAN){ | |
wgan_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu); | |
} else { | |
l2_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu); | |
} | |
if (l.cost_type == SEG && l.noobject_scale != 1) { | |
scale_mask_gpu(l.batch*l.inputs, l.delta_gpu, 0, net.truth_gpu, l.noobject_scale); | |
scale_mask_gpu(l.batch*l.inputs, l.output_gpu, 0, net.truth_gpu, l.noobject_scale); | |
} | |
if (l.cost_type == MASKED) { | |
mask_gpu(l.batch*l.inputs, net.delta_gpu, SECRET_NUM, net.truth_gpu, 0); | |
} | |
if(l.ratio){ | |
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); | |
qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare); | |
int n = (1-l.ratio) * l.batch*l.inputs; | |
float thresh = l.delta[n]; | |
thresh = 0; | |
printf("%f\n", thresh); | |
supp_gpu(l.batch*l.inputs, thresh, l.delta_gpu, 1); | |
} | |
if(l.thresh){ | |
supp_gpu(l.batch*l.inputs, l.thresh*1./l.inputs, l.delta_gpu, 1); | |
} | |
cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs); | |
l.cost[0] = sum_array(l.output, l.batch*l.inputs); | |
} | |
void backward_cost_layer_gpu(const cost_layer l, network net) | |
{ | |
axpy_gpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, net.delta_gpu, 1); | |
} | |