Spaces:
Running
Running
void swap_binary(convolutional_layer *l) | |
{ | |
float *swap = l->weights; | |
l->weights = l->binary_weights; | |
l->binary_weights = swap; | |
swap = l->weights_gpu; | |
l->weights_gpu = l->binary_weights_gpu; | |
l->binary_weights_gpu = swap; | |
} | |
void binarize_weights(float *weights, int n, int size, float *binary) | |
{ | |
int i, f; | |
for(f = 0; f < n; ++f){ | |
float mean = 0; | |
for(i = 0; i < size; ++i){ | |
mean += fabs(weights[f*size + i]); | |
} | |
mean = mean / size; | |
for(i = 0; i < size; ++i){ | |
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; | |
} | |
} | |
} | |
void binarize_cpu(float *input, int n, float *binary) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
binary[i] = (input[i] > 0) ? 1 : -1; | |
} | |
} | |
void binarize_input(float *input, int n, int size, float *binary) | |
{ | |
int i, s; | |
for(s = 0; s < size; ++s){ | |
float mean = 0; | |
for(i = 0; i < n; ++i){ | |
mean += fabs(input[i*size + s]); | |
} | |
mean = mean / n; | |
for(i = 0; i < n; ++i){ | |
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; | |
} | |
} | |
} | |
int convolutional_out_height(convolutional_layer l) | |
{ | |
return (l.h + 2*l.pad - l.size) / l.stride + 1; | |
} | |
int convolutional_out_width(convolutional_layer l) | |
{ | |
return (l.w + 2*l.pad - l.size) / l.stride + 1; | |
} | |
image get_convolutional_image(convolutional_layer l) | |
{ | |
return float_to_image(l.out_w,l.out_h,l.out_c,l.output); | |
} | |
image get_convolutional_delta(convolutional_layer l) | |
{ | |
return float_to_image(l.out_w,l.out_h,l.out_c,l.delta); | |
} | |
static size_t get_workspace_size(layer l){ | |
if(gpu_index >= 0){ | |
size_t most = 0; | |
size_t s = 0; | |
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), | |
l.srcTensorDesc, | |
l.weightDesc, | |
l.convDesc, | |
l.dstTensorDesc, | |
l.fw_algo, | |
&s); | |
if (s > most) most = s; | |
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), | |
l.srcTensorDesc, | |
l.ddstTensorDesc, | |
l.convDesc, | |
l.dweightDesc, | |
l.bf_algo, | |
&s); | |
if (s > most) most = s; | |
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), | |
l.weightDesc, | |
l.ddstTensorDesc, | |
l.convDesc, | |
l.dsrcTensorDesc, | |
l.bd_algo, | |
&s); | |
if (s > most) most = s; | |
return most; | |
} | |
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c/l.groups*sizeof(float); | |
} | |
void cudnn_convolutional_setup(layer *l) | |
{ | |
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); | |
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); | |
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); | |
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); | |
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); | |
cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); | |
cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); | |
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); | |
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); | |
cudnnSetConvolutionGroupCount(l->convDesc, l->groups); | |
if(l->groups > 1){ | |
error("CUDNN < 7 doesn't support groups, please upgrade!"); | |
} | |
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), | |
l->srcTensorDesc, | |
l->weightDesc, | |
l->convDesc, | |
l->dstTensorDesc, | |
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, | |
2000000000, | |
&l->fw_algo); | |
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), | |
l->weightDesc, | |
l->ddstTensorDesc, | |
l->convDesc, | |
l->dsrcTensorDesc, | |
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, | |
2000000000, | |
&l->bd_algo); | |
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), | |
l->srcTensorDesc, | |
l->ddstTensorDesc, | |
l->convDesc, | |
l->dweightDesc, | |
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, | |
2000000000, | |
&l->bf_algo); | |
} | |
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam) | |
{ | |
int i; | |
convolutional_layer l = {0}; | |
l.type = CONVOLUTIONAL; | |
l.groups = groups; | |
l.h = h; | |
l.w = w; | |
l.c = c; | |
l.n = n; | |
l.binary = binary; | |
l.xnor = xnor; | |
l.batch = batch; | |
l.stride = stride; | |
l.size = size; | |
l.pad = padding; | |
l.batch_normalize = batch_normalize; | |
l.weights = calloc(c/groups*n*size*size, sizeof(float)); | |
l.weight_updates = calloc(c/groups*n*size*size, sizeof(float)); | |
l.biases = calloc(n, sizeof(float)); | |
l.bias_updates = calloc(n, sizeof(float)); | |
l.nweights = c/groups*n*size*size; | |
l.nbiases = n; | |
// float scale = 1./sqrt(size*size*c); | |
float scale = sqrt(2./(size*size*c/l.groups)); | |
//printf("convscale %f\n", scale); | |
//scale = .02; | |
//for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1); | |
for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal(); | |
int out_w = convolutional_out_width(l); | |
int out_h = convolutional_out_height(l); | |
l.out_h = out_h; | |
l.out_w = out_w; | |
l.out_c = n; | |
l.outputs = l.out_h * l.out_w * l.out_c; | |
l.inputs = l.w * l.h * l.c; | |
l.output = calloc(l.batch*l.outputs, sizeof(float)); | |
l.delta = calloc(l.batch*l.outputs, sizeof(float)); | |
l.forward = forward_convolutional_layer; | |
l.backward = backward_convolutional_layer; | |
l.update = update_convolutional_layer; | |
if(binary){ | |
l.binary_weights = calloc(l.nweights, sizeof(float)); | |
l.cweights = calloc(l.nweights, sizeof(char)); | |
l.scales = calloc(n, sizeof(float)); | |
} | |
if(xnor){ | |
l.binary_weights = calloc(l.nweights, sizeof(float)); | |
l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); | |
} | |
if(batch_normalize){ | |
l.scales = calloc(n, sizeof(float)); | |
l.scale_updates = calloc(n, sizeof(float)); | |
for(i = 0; i < n; ++i){ | |
l.scales[i] = 1; | |
} | |
l.mean = calloc(n, sizeof(float)); | |
l.variance = calloc(n, sizeof(float)); | |
l.mean_delta = calloc(n, sizeof(float)); | |
l.variance_delta = calloc(n, sizeof(float)); | |
l.rolling_mean = calloc(n, sizeof(float)); | |
l.rolling_variance = calloc(n, sizeof(float)); | |
l.x = calloc(l.batch*l.outputs, sizeof(float)); | |
l.x_norm = calloc(l.batch*l.outputs, sizeof(float)); | |
} | |
if(adam){ | |
l.m = calloc(l.nweights, sizeof(float)); | |
l.v = calloc(l.nweights, sizeof(float)); | |
l.bias_m = calloc(n, sizeof(float)); | |
l.scale_m = calloc(n, sizeof(float)); | |
l.bias_v = calloc(n, sizeof(float)); | |
l.scale_v = calloc(n, sizeof(float)); | |
} | |
l.forward_gpu = forward_convolutional_layer_gpu; | |
l.backward_gpu = backward_convolutional_layer_gpu; | |
l.update_gpu = update_convolutional_layer_gpu; | |
if(gpu_index >= 0){ | |
if (adam) { | |
l.m_gpu = cuda_make_array(l.m, l.nweights); | |
l.v_gpu = cuda_make_array(l.v, l.nweights); | |
l.bias_m_gpu = cuda_make_array(l.bias_m, n); | |
l.bias_v_gpu = cuda_make_array(l.bias_v, n); | |
l.scale_m_gpu = cuda_make_array(l.scale_m, n); | |
l.scale_v_gpu = cuda_make_array(l.scale_v, n); | |
} | |
l.weights_gpu = cuda_make_array(l.weights, l.nweights); | |
l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights); | |
l.biases_gpu = cuda_make_array(l.biases, n); | |
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); | |
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); | |
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); | |
if(binary){ | |
l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights); | |
} | |
if(xnor){ | |
l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights); | |
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); | |
} | |
if(batch_normalize){ | |
l.mean_gpu = cuda_make_array(l.mean, n); | |
l.variance_gpu = cuda_make_array(l.variance, n); | |
l.rolling_mean_gpu = cuda_make_array(l.mean, n); | |
l.rolling_variance_gpu = cuda_make_array(l.variance, n); | |
l.mean_delta_gpu = cuda_make_array(l.mean, n); | |
l.variance_delta_gpu = cuda_make_array(l.variance, n); | |
l.scales_gpu = cuda_make_array(l.scales, n); | |
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); | |
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); | |
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); | |
} | |
cudnnCreateTensorDescriptor(&l.normTensorDesc); | |
cudnnCreateTensorDescriptor(&l.srcTensorDesc); | |
cudnnCreateTensorDescriptor(&l.dstTensorDesc); | |
cudnnCreateFilterDescriptor(&l.weightDesc); | |
cudnnCreateTensorDescriptor(&l.dsrcTensorDesc); | |
cudnnCreateTensorDescriptor(&l.ddstTensorDesc); | |
cudnnCreateFilterDescriptor(&l.dweightDesc); | |
cudnnCreateConvolutionDescriptor(&l.convDesc); | |
cudnn_convolutional_setup(&l); | |
} | |
l.workspace_size = get_workspace_size(l); | |
l.activation = activation; | |
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BFLOPs\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, (2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.); | |
return l; | |
} | |
void denormalize_convolutional_layer(convolutional_layer l) | |
{ | |
int i, j; | |
for(i = 0; i < l.n; ++i){ | |
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); | |
for(j = 0; j < l.c/l.groups*l.size*l.size; ++j){ | |
l.weights[i*l.c/l.groups*l.size*l.size + j] *= scale; | |
} | |
l.biases[i] -= l.rolling_mean[i] * scale; | |
l.scales[i] = 1; | |
l.rolling_mean[i] = 0; | |
l.rolling_variance[i] = 1; | |
} | |
} | |
/* | |
void test_convolutional_layer() | |
{ | |
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0); | |
l.batch_normalize = 1; | |
float data[] = {1,1,1,1,1, | |
1,1,1,1,1, | |
1,1,1,1,1, | |
1,1,1,1,1, | |
1,1,1,1,1, | |
2,2,2,2,2, | |
2,2,2,2,2, | |
2,2,2,2,2, | |
2,2,2,2,2, | |
2,2,2,2,2, | |
3,3,3,3,3, | |
3,3,3,3,3, | |
3,3,3,3,3, | |
3,3,3,3,3, | |
3,3,3,3,3}; | |
//net.input = data; | |
//forward_convolutional_layer(l); | |
} | |
*/ | |
void resize_convolutional_layer(convolutional_layer *l, int w, int h) | |
{ | |
l->w = w; | |
l->h = h; | |
int out_w = convolutional_out_width(*l); | |
int out_h = convolutional_out_height(*l); | |
l->out_w = out_w; | |
l->out_h = out_h; | |
l->outputs = l->out_h * l->out_w * l->out_c; | |
l->inputs = l->w * l->h * l->c; | |
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); | |
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); | |
if(l->batch_normalize){ | |
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float)); | |
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float)); | |
} | |
cuda_free(l->delta_gpu); | |
cuda_free(l->output_gpu); | |
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); | |
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); | |
if(l->batch_normalize){ | |
cuda_free(l->x_gpu); | |
cuda_free(l->x_norm_gpu); | |
l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); | |
l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); | |
} | |
cudnn_convolutional_setup(l); | |
l->workspace_size = get_workspace_size(*l); | |
} | |
void add_bias(float *output, float *biases, int batch, int n, int size) | |
{ | |
int i,j,b; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < n; ++i){ | |
for(j = 0; j < size; ++j){ | |
output[(b*n + i)*size + j] += biases[i]; | |
} | |
} | |
} | |
} | |
void scale_bias(float *output, float *scales, int batch, int n, int size) | |
{ | |
int i,j,b; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < n; ++i){ | |
for(j = 0; j < size; ++j){ | |
output[(b*n + i)*size + j] *= scales[i]; | |
} | |
} | |
} | |
} | |
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) | |
{ | |
int i,b; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < n; ++i){ | |
bias_updates[i] += sum_array(delta+size*(i+b*n), size); | |
} | |
} | |
} | |
void forward_convolutional_layer(convolutional_layer l, network net) | |
{ | |
int i, j; | |
fill_cpu(l.outputs*l.batch, 0, l.output, 1); | |
if(l.xnor){ | |
binarize_weights(l.weights, l.n, l.c/l.groups*l.size*l.size, l.binary_weights); | |
swap_binary(&l); | |
binarize_cpu(net.input, l.c*l.h*l.w*l.batch, l.binary_input); | |
net.input = l.binary_input; | |
} | |
int m = l.n/l.groups; | |
int k = l.size*l.size*l.c/l.groups; | |
int n = l.out_w*l.out_h; | |
for(i = 0; i < l.batch; ++i){ | |
for(j = 0; j < l.groups; ++j){ | |
float *a = l.weights + j*l.nweights/l.groups; | |
float *b = net.workspace; | |
float *c = l.output + (i*l.groups + j)*n*m; | |
float *im = net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w; | |
if (l.size == 1) { | |
b = im; | |
} else { | |
im2col_cpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b); | |
} | |
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); | |
} | |
} | |
if(l.batch_normalize){ | |
forward_batchnorm_layer(l, net); | |
} else { | |
add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w); | |
} | |
activate_array(l.output, l.outputs*l.batch, l.activation); | |
if(l.binary || l.xnor) swap_binary(&l); | |
} | |
void backward_convolutional_layer(convolutional_layer l, network net) | |
{ | |
int i, j; | |
int m = l.n/l.groups; | |
int n = l.size*l.size*l.c/l.groups; | |
int k = l.out_w*l.out_h; | |
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); | |
if(l.batch_normalize){ | |
backward_batchnorm_layer(l, net); | |
} else { | |
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); | |
} | |
for(i = 0; i < l.batch; ++i){ | |
for(j = 0; j < l.groups; ++j){ | |
float *a = l.delta + (i*l.groups + j)*m*k; | |
float *b = net.workspace; | |
float *c = l.weight_updates + j*l.nweights/l.groups; | |
float *im = net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w; | |
float *imd = net.delta + (i*l.groups + j)*l.c/l.groups*l.h*l.w; | |
if(l.size == 1){ | |
b = im; | |
} else { | |
im2col_cpu(im, l.c/l.groups, l.h, l.w, | |
l.size, l.stride, l.pad, b); | |
} | |
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); | |
if (net.delta) { | |
a = l.weights + j*l.nweights/l.groups; | |
b = l.delta + (i*l.groups + j)*m*k; | |
c = net.workspace; | |
if (l.size == 1) { | |
c = imd; | |
} | |
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); | |
if (l.size != 1) { | |
col2im_cpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, imd); | |
} | |
} | |
} | |
} | |
} | |
void update_convolutional_layer(convolutional_layer l, update_args a) | |
{ | |
float learning_rate = a.learning_rate*l.learning_rate_scale; | |
float momentum = a.momentum; | |
float decay = a.decay; | |
int batch = a.batch; | |
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); | |
scal_cpu(l.n, momentum, l.bias_updates, 1); | |
if(l.scales){ | |
axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1); | |
scal_cpu(l.n, momentum, l.scale_updates, 1); | |
} | |
axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); | |
axpy_cpu(l.nweights, learning_rate/batch, l.weight_updates, 1, l.weights, 1); | |
scal_cpu(l.nweights, momentum, l.weight_updates, 1); | |
} | |
image get_convolutional_weight(convolutional_layer l, int i) | |
{ | |
int h = l.size; | |
int w = l.size; | |
int c = l.c/l.groups; | |
return float_to_image(w,h,c,l.weights+i*h*w*c); | |
} | |
void rgbgr_weights(convolutional_layer l) | |
{ | |
int i; | |
for(i = 0; i < l.n; ++i){ | |
image im = get_convolutional_weight(l, i); | |
if (im.c == 3) { | |
rgbgr_image(im); | |
} | |
} | |
} | |
void rescale_weights(convolutional_layer l, float scale, float trans) | |
{ | |
int i; | |
for(i = 0; i < l.n; ++i){ | |
image im = get_convolutional_weight(l, i); | |
if (im.c == 3) { | |
scale_image(im, scale); | |
float sum = sum_array(im.data, im.w*im.h*im.c); | |
l.biases[i] += sum*trans; | |
} | |
} | |
} | |
image *get_weights(convolutional_layer l) | |
{ | |
image *weights = calloc(l.n, sizeof(image)); | |
int i; | |
for(i = 0; i < l.n; ++i){ | |
weights[i] = copy_image(get_convolutional_weight(l, i)); | |
normalize_image(weights[i]); | |
/* | |
char buff[256]; | |
sprintf(buff, "filter%d", i); | |
save_image(weights[i], buff); | |
*/ | |
} | |
//error("hey"); | |
return weights; | |
} | |
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights) | |
{ | |
image *single_weights = get_weights(l); | |
show_images(single_weights, l.n, window); | |
image delta = get_convolutional_image(l); | |
image dc = collapse_image_layers(delta, 1); | |
char buff[256]; | |
sprintf(buff, "%s: Output", window); | |
//show_image(dc, buff); | |
//save_image(dc, buff); | |
free_image(dc); | |
return single_weights; | |
} | |