Spaces:
Sleeping
Sleeping
extern "C" { | |
} | |
__global__ void scale_bias_kernel(float *output, float *biases, int n, int size) | |
{ | |
int offset = blockIdx.x * blockDim.x + threadIdx.x; | |
int filter = blockIdx.y; | |
int batch = blockIdx.z; | |
if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter]; | |
} | |
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size) | |
{ | |
dim3 dimGrid((size-1)/BLOCK + 1, n, batch); | |
dim3 dimBlock(BLOCK, 1, 1); | |
scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) | |
{ | |
__shared__ float part[BLOCK]; | |
int i,b; | |
int filter = blockIdx.x; | |
int p = threadIdx.x; | |
float sum = 0; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < size; i += BLOCK){ | |
int index = p + i + size*(filter + n*b); | |
sum += (p+i < size) ? delta[index]*x_norm[index] : 0; | |
} | |
} | |
part[p] = sum; | |
__syncthreads(); | |
if (p == 0) { | |
for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i]; | |
} | |
} | |
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) | |
{ | |
backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void add_bias_kernel(float *output, float *biases, int batch, int n, int size) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (index >= n*size*batch) return; | |
int i = index % size; | |
index /= size; | |
int j = index % n; | |
index /= n; | |
int k = index; | |
output[(k*n+j)*size + i] += biases[j]; | |
} | |
void add_bias_gpu(float *output, float *biases, int batch, int n, int size) | |
{ | |
int num = n*size*batch; | |
add_bias_kernel<<<cuda_gridsize(num), BLOCK>>>(output, biases, batch, n, size); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void backward_bias_conn_kernel(float *bias_updates, float *delta, int batch, int n) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (index >= n) return; | |
int b; | |
float sum = 0; | |
for(b = 0; b < batch; ++b){ | |
int i = b*n + index; | |
sum += delta[i]; | |
} | |
bias_updates[index] += sum; | |
} | |
__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size) | |
{ | |
__shared__ float part[BLOCK]; | |
int i,b; | |
int filter = blockIdx.x; | |
int p = threadIdx.x; | |
float sum = 0; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < size; i += BLOCK){ | |
int index = p + i + size*(filter + n*b); | |
sum += (p+i < size) ? delta[index] : 0; | |
} | |
} | |
part[p] = sum; | |
__syncthreads(); | |
if (p == 0) { | |
for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; | |
} | |
} | |
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) | |
{ | |
if(size == 1){ | |
backward_bias_conn_kernel<<<cuda_gridsize(n), BLOCK>>>(bias_updates, delta, batch, n); | |
}else{ | |
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size); | |
} | |
check_error(cudaPeekAtLastError()); | |
} | |
/* | |
__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
int f1 = index / n; | |
int f2 = index % n; | |
if (f2 <= f1) return; | |
float sum = 0; | |
float norm1 = 0; | |
float norm2 = 0; | |
int b, i; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < size; ++i){ | |
int i1 = b * size * n + f1 * size + i; | |
int i2 = b * size * n + f2 * size + i; | |
sum += output[i1] * output[i2]; | |
norm1 += output[i1] * output[i1]; | |
norm2 += output[i2] * output[i2]; | |
} | |
} | |
norm1 = sqrt(norm1); | |
norm2 = sqrt(norm2); | |
float norm = norm1 * norm2; | |
sum = sum / norm; | |
for(b = 0; b < batch; ++b){ | |
for(i = 0; i < size; ++i){ | |
int i1 = b * size * n + f1 * size + i; | |
int i2 = b * size * n + f2 * size + i; | |
delta[i1] += - scale * sum * output[i2] / norm; | |
delta[i2] += - scale * sum * output[i1] / norm; | |
} | |
} | |
} | |
void dot_error_gpu(layer l) | |
{ | |
dot_kernel<<<cuda_gridsize(l.n*l.n), BLOCK>>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu); | |
check_error(cudaPeekAtLastError()); | |
} | |
*/ | |
__global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (index >= N) return; | |
float mhat = m[index] / (1.f - powf(B1, t)); | |
float vhat = v[index] / (1.f - powf(B2, t)); | |
x[index] = x[index] + rate * mhat / (sqrtf(vhat) + eps); | |
} | |
extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t) | |
{ | |
adam_kernel<<<cuda_gridsize(n), BLOCK>>>(n, x, m, v, B1, B2, rate, eps, t); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t) | |
{ | |
scal_gpu(n, B1, m, 1); | |
scal_gpu(n, B2, v, 1); | |
axpy_gpu(n, -decay*batch, w, 1, d, 1); | |
axpy_gpu(n, (1-B1), d, 1, m, 1); | |
mul_gpu(n, d, 1, d, 1); | |
axpy_gpu(n, (1-B2), d, 1, v, 1); | |
adam_gpu(n, w, m, v, B1, B2, rate, eps, t); | |
fill_gpu(n, 0, d, 1); | |
} | |
__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (index >= N) return; | |
int f = (index/spatial)%filters; | |
x[index] = (x[index] - mean[f])/(sqrtf(variance[f] + .00001f)); | |
} | |
__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (index >= N) return; | |
int f = (index/spatial)%filters; | |
delta[index] = delta[index] * 1.f/(sqrtf(variance[f] + .00001f)) + variance_delta[f] * 2.f * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); | |
} | |
extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) | |
{ | |
size_t N = batch*filters*spatial; | |
normalize_delta_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (i >= filters) return; | |
int j,k; | |
variance_delta[i] = 0; | |
for(j = 0; j < batch; ++j){ | |
for(k = 0; k < spatial; ++k){ | |
int index = j*filters*spatial + i*spatial + k; | |
variance_delta[i] += delta[index]*(x[index] - mean[i]); | |
} | |
} | |
variance_delta[i] *= -.5f * powf(variance[i] + .00001f, (float)(-3.f/2.f)); | |
} | |
__global__ void accumulate_kernel(float *x, int n, int groups, float *sum) | |
{ | |
int k; | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (i >= groups) return; | |
sum[i] = 0; | |
for(k = 0; k < n; ++k){ | |
sum[i] += x[k*groups + i]; | |
} | |
} | |
__global__ void fast_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) | |
{ | |
const int threads = BLOCK; | |
__shared__ float local[threads]; | |
int id = threadIdx.x; | |
local[id] = 0; | |
int filter = blockIdx.x; | |
int i, j; | |
for(j = 0; j < batch; ++j){ | |
for(i = 0; i < spatial; i += threads){ | |
int index = j*spatial*filters + filter*spatial + i + id; | |
local[id] += (i+id < spatial) ? delta[index] : 0; | |
} | |
} | |
__syncthreads(); | |
if(id == 0){ | |
mean_delta[filter] = 0; | |
for(i = 0; i < threads; ++i){ | |
mean_delta[filter] += local[i]; | |
} | |
mean_delta[filter] *= (-1.f/sqrtf(variance[filter] + .00001f)); | |
} | |
} | |
__global__ void fast_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) | |
{ | |
const int threads = BLOCK; | |
__shared__ float local[threads]; | |
int id = threadIdx.x; | |
local[id] = 0; | |
int filter = blockIdx.x; | |
int i, j; | |
for(j = 0; j < batch; ++j){ | |
for(i = 0; i < spatial; i += threads){ | |
int index = j*spatial*filters + filter*spatial + i + id; | |
local[id] += (i+id < spatial) ? delta[index]*(x[index] - mean[filter]) : 0; | |
} | |
} | |
__syncthreads(); | |
if(id == 0){ | |
variance_delta[filter] = 0; | |
for(i = 0; i < threads; ++i){ | |
variance_delta[filter] += local[i]; | |
} | |
variance_delta[filter] *= -.5f * powf(variance[filter] + .00001f, (float)(-3.f/2.f)); | |
} | |
} | |
__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (i >= filters) return; | |
int j,k; | |
mean_delta[i] = 0; | |
for (j = 0; j < batch; ++j) { | |
for (k = 0; k < spatial; ++k) { | |
int index = j*filters*spatial + i*spatial + k; | |
mean_delta[i] += delta[index]; | |
} | |
} | |
mean_delta[i] *= (-1.f/sqrtf(variance[i] + .00001f)); | |
} | |
extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) | |
{ | |
mean_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) | |
{ | |
fast_mean_delta_kernel<<<filters, BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) | |
{ | |
fast_variance_delta_kernel<<<filters, BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, variance_delta); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean) | |
{ | |
float scale = 1.f/(batch * spatial); | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (i >= filters) return; | |
int j,k; | |
mean[i] = 0; | |
for(j = 0; j < batch; ++j){ | |
for(k = 0; k < spatial; ++k){ | |
int index = j*filters*spatial + i*spatial + k; | |
mean[i] += x[index]; | |
} | |
} | |
mean[i] *= scale; | |
} | |
__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) | |
{ | |
float scale = 1.f/(batch * spatial - 1); | |
int j,k; | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (i >= filters) return; | |
variance[i] = 0; | |
for(j = 0; j < batch; ++j){ | |
for(k = 0; k < spatial; ++k){ | |
int index = j*filters*spatial + i*spatial + k; | |
variance[i] += powf((x[index] - mean[i]), 2); | |
} | |
} | |
variance[i] *= scale; | |
} | |
__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i >= N) return; | |
int in_index = i; | |
int in_w = i%w; | |
i = i/w; | |
int in_h = i%h; | |
i = i/h; | |
int in_c = i%c; | |
i = i/c; | |
int b = i%batch; | |
int out_c = c/(stride*stride); | |
int c2 = in_c % out_c; | |
int offset = in_c / out_c; | |
int w2 = in_w*stride + offset % stride; | |
int h2 = in_h*stride + offset / stride; | |
//printf("%d\n", offset); | |
int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b)); | |
// printf("%d %d %d\n", w2, h2, c2); | |
//printf("%d %d\n", in_index, out_index); | |
//if(out_index >= N || out_index < 0) printf("bad bad bad \n"); | |
if(forward) out[out_index] = x[in_index]; | |
else out[in_index] = x[out_index]; | |
//if(forward) out[1] = x[1]; | |
//else out[0] = x[0]; | |
} | |
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX]; | |
} | |
__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA); | |
} | |
__global__ void const_kernel(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) X[i*INCX] = ALPHA; | |
} | |
__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) X[i*INCX] = fminf(ALPHA, fmaxf(-ALPHA, X[i*INCX])); | |
} | |
__global__ void supp_kernel(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) { | |
if((X[i*INCX] * X[i*INCX]) < (ALPHA * ALPHA)) X[i*INCX] = 0; | |
} | |
} | |
__global__ void add_kernel(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) X[i*INCX] += ALPHA; | |
} | |
__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) X[i*INCX] *= ALPHA; | |
} | |
__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) X[i*INCX] = ALPHA; | |
} | |
__global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX]; | |
} | |
__global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < N) Y[i*INCY] *= X[i*INCX]; | |
} | |
extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) | |
{ | |
size_t N = batch*filters*spatial; | |
normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void l2norm_kernel(int N, float *x, float *dx, int batch, int filters, int spatial) | |
{ | |
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (index >= N) return; | |
int b = index / spatial; | |
int i = index % spatial; | |
int f; | |
float sum = 0; | |
for(f = 0; f < filters; ++f){ | |
int index = b*filters*spatial + f*spatial + i; | |
sum += powf(x[index], 2); | |
} | |
sum = sqrtf(sum); | |
if(sum == 0) sum = 1; | |
//printf("%f\n", sum); | |
for(f = 0; f < filters; ++f){ | |
int index = b*filters*spatial + f*spatial + i; | |
x[index] /= sum; | |
dx[index] = (1 - x[index]) / sum; | |
} | |
} | |
extern "C" void l2normalize_gpu(float *x, float *dx, int batch, int filters, int spatial) | |
{ | |
size_t N = batch*spatial; | |
l2norm_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, dx, batch, filters, spatial); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void fast_mean_kernel(float *x, int batch, int filters, int spatial, float *mean) | |
{ | |
const int threads = BLOCK; | |
__shared__ float local[threads]; | |
int id = threadIdx.x; | |
local[id] = 0; | |
int filter = blockIdx.x; | |
int i, j; | |
for(j = 0; j < batch; ++j){ | |
for(i = 0; i < spatial; i += threads){ | |
int index = j*spatial*filters + filter*spatial + i + id; | |
local[id] += (i+id < spatial) ? x[index] : 0; | |
} | |
} | |
__syncthreads(); | |
if(id == 0){ | |
mean[filter] = 0; | |
for(i = 0; i < threads; ++i){ | |
mean[filter] += local[i]; | |
} | |
mean[filter] /= spatial * batch; | |
} | |
} | |
__global__ void fast_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) | |
{ | |
const int threads = BLOCK; | |
__shared__ float local[threads]; | |
int id = threadIdx.x; | |
local[id] = 0; | |
int filter = blockIdx.x; | |
int i, j; | |
for(j = 0; j < batch; ++j){ | |
for(i = 0; i < spatial; i += threads){ | |
int index = j*spatial*filters + filter*spatial + i + id; | |
local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0; | |
} | |
} | |
__syncthreads(); | |
if(id == 0){ | |
variance[filter] = 0; | |
for(i = 0; i < threads; ++i){ | |
variance[filter] += local[i]; | |
} | |
variance[filter] /= (spatial * batch - 1); | |
} | |
} | |
extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean) | |
{ | |
fast_mean_kernel<<<filters, BLOCK>>>(x, batch, filters, spatial, mean); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) | |
{ | |
fast_variance_kernel<<<filters, BLOCK>>>(x, mean, batch, filters, spatial, variance); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean) | |
{ | |
mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, batch, filters, spatial, mean); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) | |
{ | |
variance_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, mean, batch, filters, spatial, variance); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void axpy_gpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) | |
{ | |
axpy_gpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY); | |
} | |
extern "C" void pow_gpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) | |
{ | |
pow_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX, Y, INCY); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void axpy_gpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY) | |
{ | |
axpy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void copy_gpu(int N, float * X, int INCX, float * Y, int INCY) | |
{ | |
copy_gpu_offset(N, X, 0, INCX, Y, 0, INCY); | |
} | |
extern "C" void mul_gpu(int N, float * X, int INCX, float * Y, int INCY) | |
{ | |
mul_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, INCX, Y, INCY); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void copy_gpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY) | |
{ | |
copy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, OFFX, INCX, Y, OFFY, INCY); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void flatten_kernel(int N, float *x, int spatial, int layers, int batch, int forward, float *out) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i >= N) return; | |
int in_s = i%spatial; | |
i = i/spatial; | |
int in_c = i%layers; | |
i = i/layers; | |
int b = i; | |
int i1 = b*layers*spatial + in_c*spatial + in_s; | |
int i2 = b*layers*spatial + in_s*layers + in_c; | |
if (forward) out[i2] = x[i1]; | |
else out[i1] = x[i2]; | |
} | |
extern "C" void flatten_gpu(float *x, int spatial, int layers, int batch, int forward, float *out) | |
{ | |
int size = spatial*batch*layers; | |
flatten_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, spatial, layers, batch, forward, out); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void reorg_gpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out) | |
{ | |
int size = w*h*c*batch; | |
reorg_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, w, h, c, batch, stride, forward, out); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void mask_kernel(int n, float *x, float mask_num, float *mask, float val) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n && mask[i] == mask_num) x[i] = val; | |
} | |
extern "C" void mask_gpu(int N, float * X, float mask_num, float * mask, float val) | |
{ | |
mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask, val); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void scale_mask_kernel(int n, float *x, float mask_num, float *mask, float scale) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n && mask[i] == mask_num) x[i] *= scale; | |
} | |
extern "C" void scale_mask_gpu(int N, float * X, float mask_num, float * mask, float scale) | |
{ | |
scale_mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask, scale); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void const_gpu(int N, float ALPHA, float * X, int INCX) | |
{ | |
const_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void constrain_gpu(int N, float ALPHA, float * X, int INCX) | |
{ | |
constrain_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void add_gpu(int N, float ALPHA, float * X, int INCX) | |
{ | |
add_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void scal_gpu(int N, float ALPHA, float * X, int INCX) | |
{ | |
scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void supp_gpu(int N, float ALPHA, float * X, int INCX) | |
{ | |
supp_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void fill_gpu(int N, float ALPHA, float * X, int INCX) | |
{ | |
fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out) | |
{ | |
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (id >= size) return; | |
int i = id % minw; | |
id /= minw; | |
int j = id % minh; | |
id /= minh; | |
int k = id % minc; | |
id /= minc; | |
int b = id % batch; | |
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); | |
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); | |
out[out_index] = s1*out[out_index] + s2*add[add_index]; | |
//out[out_index] += add[add_index]; | |
} | |
extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out) | |
{ | |
int minw = (w1 < w2) ? w1 : w2; | |
int minh = (h1 < h2) ? h1 : h2; | |
int minc = (c1 < c2) ? c1 : c2; | |
int stride = w1/w2; | |
int sample = w2/w1; | |
assert(stride == h1/h2); | |
assert(sample == h2/h1); | |
if(stride < 1) stride = 1; | |
if(sample < 1) sample = 1; | |
int size = batch * minw * minh * minc; | |
shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, s1, s2, out); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
float diff = truth[i] - pred[i]; | |
float abs_val = fabsf(diff); | |
if(abs_val < 1) { | |
error[i] = diff * diff; | |
delta[i] = diff; | |
} | |
else { | |
error[i] = 2*abs_val - 1; | |
delta[i] = (diff > 0) ? 1 : -1; | |
} | |
} | |
} | |
extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
smooth_l1_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void softmax_x_ent_kernel(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
float t = truth[i]; | |
float p = pred[i]; | |
error[i] = (t) ? -log(p) : 0; | |
delta[i] = t-p; | |
} | |
} | |
extern "C" void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
softmax_x_ent_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void logistic_x_ent_kernel(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
float t = truth[i]; | |
float p = pred[i]; | |
error[i] = -t*log(p+.0000001) - (1-t)*log(1-p+.0000001); | |
delta[i] = t-p; | |
} | |
} | |
extern "C" void logistic_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
logistic_x_ent_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void l2_kernel(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
float diff = truth[i] - pred[i]; | |
error[i] = diff * diff; //I know this is technically wrong, deal with it. | |
delta[i] = diff; | |
} | |
} | |
extern "C" void l2_gpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
l2_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void l1_kernel(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
float diff = truth[i] - pred[i]; | |
error[i] = abs(diff); | |
delta[i] = (diff > 0) ? 1 : -1; | |
} | |
} | |
extern "C" void l1_gpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
l1_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void wgan_kernel(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
error[i] = truth[i] ? -pred[i] : pred[i]; | |
delta[i] = (truth[i] > 0) ? 1 : -1; | |
} | |
} | |
extern "C" void wgan_gpu(int n, float *pred, float *truth, float *delta, float *error) | |
{ | |
wgan_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); | |
} | |
} | |
__global__ void deinter_kernel(int NX, float *X, int NY, float *Y, int B, float *OUT) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < (NX+NY)*B){ | |
int b = i / (NX+NY); | |
int j = i % (NX+NY); | |
if (j < NX){ | |
if(X) X[b*NX + j] += OUT[i]; | |
} else { | |
if(Y) Y[b*NY + j - NX] += OUT[i]; | |
} | |
} | |
} | |
extern "C" void deinter_gpu(int NX, float *X, int NY, float *Y, int B, float *OUT) | |
{ | |
deinter_kernel<<<cuda_gridsize((NX+NY)*B), BLOCK>>>(NX, X, NY, Y, B, OUT); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void inter_kernel(int NX, float *X, int NY, float *Y, int B, float *OUT) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < (NX+NY)*B){ | |
int b = i / (NX+NY); | |
int j = i % (NX+NY); | |
if (j < NX){ | |
OUT[i] = X[b*NX + j]; | |
} else { | |
OUT[i] = Y[b*NY + j - NX]; | |
} | |
} | |
} | |
extern "C" void inter_gpu(int NX, float *X, int NY, float *Y, int B, float *OUT) | |
{ | |
inter_kernel<<<cuda_gridsize((NX+NY)*B), BLOCK>>>(NX, X, NY, Y, B, OUT); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c) | |
{ | |
weighted_sum_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, s, c); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void weighted_delta_kernel(int n, float *a, float *b, float *s, float *da, float *db, float *ds, float *dc) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
if(da) da[i] += dc[i] * s[i]; | |
if(db) db[i] += dc[i] * (1-s[i]); | |
ds[i] += dc[i] * (a[i] - b[i]); | |
} | |
} | |
extern "C" void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc) | |
{ | |
weighted_delta_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, s, da, db, ds, dc); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void mult_add_into_kernel(int n, float *a, float *b, float *c) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n){ | |
c[i] += a[i]*b[i]; | |
} | |
} | |
extern "C" void mult_add_into_gpu(int num, float *a, float *b, float *c) | |
{ | |
mult_add_into_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, c); | |
check_error(cudaPeekAtLastError()); | |
} | |
__device__ void softmax_device(float *input, int n, float temp, int stride, float *output) | |
{ | |
int i; | |
float sum = 0; | |
float largest = -INFINITY; | |
for(i = 0; i < n; ++i){ | |
int val = input[i*stride]; | |
largest = (val>largest) ? val : largest; | |
} | |
for(i = 0; i < n; ++i){ | |
float e = expf(input[i*stride]/temp - largest/temp); | |
sum += e; | |
output[i*stride] = e; | |
} | |
for(i = 0; i < n; ++i){ | |
output[i*stride] /= sum; | |
} | |
} | |
__global__ void softmax_tree_kernel(float *input, int spatial, int batch, int stride, float temp, float *output, int groups, int *group_size, int *group_offset) | |
{ | |
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (id >= spatial*batch*groups) return; | |
int s = id % spatial; | |
id = id / spatial; | |
int g = id % groups; | |
int b = id / groups; | |
int goff = group_offset[g]*spatial; | |
int boff = b*stride; | |
softmax_device(input + goff + boff + s, group_size[g], temp, spatial, output + goff + boff + s); | |
} | |
extern "C" void softmax_tree(float *input, int spatial, int batch, int stride, float temp, float *output, tree hier) | |
{ | |
int *tree_groups_size = cuda_make_int_array(hier.group_size, hier.groups); | |
int *tree_groups_offset = cuda_make_int_array(hier.group_offset, hier.groups); | |
/* | |
static int *tree_groups_size = 0; | |
static int *tree_groups_offset = 0; | |
if(!tree_groups_size){ | |
tree_groups_size = cuda_make_int_array(hier.group_size, hier.groups); | |
tree_groups_offset = cuda_make_int_array(hier.group_offset, hier.groups); | |
} | |
*/ | |
int num = spatial*batch*hier.groups; | |
softmax_tree_kernel<<<cuda_gridsize(num), BLOCK>>>(input, spatial, batch, stride, temp, output, hier.groups, tree_groups_size, tree_groups_offset); | |
check_error(cudaPeekAtLastError()); | |
cuda_free((float *)tree_groups_size); | |
cuda_free((float *)tree_groups_offset); | |
} | |
__global__ void softmax_kernel(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) | |
{ | |
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (id >= batch*groups) return; | |
int b = id / groups; | |
int g = id % groups; | |
softmax_device(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset); | |
} | |
extern "C" void softmax_gpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) | |
{ | |
softmax_kernel<<<cuda_gridsize(batch*groups), BLOCK>>>(input, n, batch, batch_offset, groups, group_offset, stride, temp, output); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) | |
{ | |
size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i >= N) return; | |
int out_index = i; | |
int out_w = i%(w*stride); | |
i = i/(w*stride); | |
int out_h = i%(h*stride); | |
i = i/(h*stride); | |
int out_c = i%c; | |
i = i/c; | |
int b = i%batch; | |
int in_w = out_w / stride; | |
int in_h = out_h / stride; | |
int in_c = out_c; | |
int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w; | |
if(forward) out[out_index] += scale * x[in_index]; | |
else atomicAdd(x+in_index, scale * out[out_index]); | |
} | |
extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) | |
{ | |
size_t size = w*h*c*batch*stride*stride; | |
upsample_kernel<<<cuda_gridsize(size), BLOCK>>>(size, in, w, h, c, batch, stride, forward, scale, out); | |
check_error(cudaPeekAtLastError()); | |
} | |