Spaces:
Sleeping
Sleeping
#include "cuda_runtime.h" | |
#include "curand.h" | |
#include "cublas_v2.h" | |
extern "C" { | |
#include "activations.h" | |
#include "cuda.h" | |
} | |
__device__ float lhtan_activate_kernel(float x) | |
{ | |
if(x < 0) return .001f*x; | |
if(x > 1) return .001f*(x-1.f) + 1.f; | |
return x; | |
} | |
__device__ float lhtan_gradient_kernel(float x) | |
{ | |
if(x > 0 && x < 1) return 1; | |
return .001; | |
} | |
__device__ float hardtan_activate_kernel(float x) | |
{ | |
if (x < -1) return -1; | |
if (x > 1) return 1; | |
return x; | |
} | |
__device__ float linear_activate_kernel(float x){return x;} | |
__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));} | |
__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;} | |
__device__ float relu_activate_kernel(float x){return x*(x>0);} | |
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} | |
__device__ float selu_activate_kernel(float x){return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x)-1);} | |
__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;} | |
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;} | |
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;} | |
__device__ float tanh_activate_kernel(float x){return (2.f/(1 + expf(-2*x)) - 1);} | |
__device__ float plse_activate_kernel(float x) | |
{ | |
if(x < -4) return .01f * (x + 4); | |
if(x > 4) return .01f * (x - 4) + 1; | |
return .125f*x + .5f; | |
} | |
__device__ float stair_activate_kernel(float x) | |
{ | |
int n = floorf(x); | |
if (n%2 == 0) return floorf(x/2); | |
else return (x - n) + floorf(x/2); | |
} | |
__device__ float hardtan_gradient_kernel(float x) | |
{ | |
if (x > -1 && x < 1) return 1; | |
return 0; | |
} | |
__device__ float linear_gradient_kernel(float x){return 1;} | |
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;} | |
__device__ float loggy_gradient_kernel(float x) | |
{ | |
float y = (x+1)/2; | |
return 2*(1-y)*y; | |
} | |
__device__ float relu_gradient_kernel(float x){return (x>0);} | |
__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);} | |
__device__ float selu_gradient_kernel(float x){return (x >= 0)*1.0507 + (x < 0)*(x + 1.0507*1.6732);} | |
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;} | |
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;} | |
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;} | |
__device__ float tanh_gradient_kernel(float x){return 1-x*x;} | |
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;} | |
__device__ float stair_gradient_kernel(float x) | |
{ | |
if (floorf(x) == x) return 0; | |
return 1; | |
} | |
__device__ float activate_kernel(float x, ACTIVATION a) | |
{ | |
switch(a){ | |
case LINEAR: | |
return linear_activate_kernel(x); | |
case LOGISTIC: | |
return logistic_activate_kernel(x); | |
case LOGGY: | |
return loggy_activate_kernel(x); | |
case RELU: | |
return relu_activate_kernel(x); | |
case ELU: | |
return elu_activate_kernel(x); | |
case SELU: | |
return selu_activate_kernel(x); | |
case RELIE: | |
return relie_activate_kernel(x); | |
case RAMP: | |
return ramp_activate_kernel(x); | |
case LEAKY: | |
return leaky_activate_kernel(x); | |
case TANH: | |
return tanh_activate_kernel(x); | |
case PLSE: | |
return plse_activate_kernel(x); | |
case STAIR: | |
return stair_activate_kernel(x); | |
case HARDTAN: | |
return hardtan_activate_kernel(x); | |
case LHTAN: | |
return lhtan_activate_kernel(x); | |
} | |
return 0; | |
} | |
__device__ float gradient_kernel(float x, ACTIVATION a) | |
{ | |
switch(a){ | |
case LINEAR: | |
return linear_gradient_kernel(x); | |
case LOGISTIC: | |
return logistic_gradient_kernel(x); | |
case LOGGY: | |
return loggy_gradient_kernel(x); | |
case RELU: | |
return relu_gradient_kernel(x); | |
case ELU: | |
return elu_gradient_kernel(x); | |
case SELU: | |
return selu_gradient_kernel(x); | |
case RELIE: | |
return relie_gradient_kernel(x); | |
case RAMP: | |
return ramp_gradient_kernel(x); | |
case LEAKY: | |
return leaky_gradient_kernel(x); | |
case TANH: | |
return tanh_gradient_kernel(x); | |
case PLSE: | |
return plse_gradient_kernel(x); | |
case STAIR: | |
return stair_gradient_kernel(x); | |
case HARDTAN: | |
return hardtan_gradient_kernel(x); | |
case LHTAN: | |
return lhtan_gradient_kernel(x); | |
} | |
return 0; | |
} | |
__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx) | |
{ | |
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
int i = id % s; | |
int b = id / s; | |
float x1 = x[b*s + i]; | |
float x2 = x[b*s + s/2 + i]; | |
if(id < n) { | |
float de = dy[id]; | |
dx[b*s + i] = x2*de; | |
dx[b*s + s/2 + i] = x1*de; | |
} | |
} | |
extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y) | |
{ | |
binary_gradient_array_kernel<<<cuda_gridsize(n/2), BLOCK>>>(x, dx, n/2, size, a, y); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y) | |
{ | |
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
int i = id % s; | |
int b = id / s; | |
float x1 = x[b*s + i]; | |
float x2 = x[b*s + s/2 + i]; | |
if(id < n) y[id] = x1*x2; | |
} | |
extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y) | |
{ | |
binary_activate_array_kernel<<<cuda_gridsize(n/2), BLOCK>>>(x, n/2, size, a, y); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n) x[i] = activate_kernel(x[i], a); | |
} | |
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(i < n) delta[i] *= gradient_kernel(x[i], a); | |
} | |
extern "C" void activate_array_gpu(float *x, int n, ACTIVATION a) | |
{ | |
activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a); | |
check_error(cudaPeekAtLastError()); | |
} | |
extern "C" void gradient_array_gpu(float *x, int n, ACTIVATION a, float *delta) | |
{ | |
gradient_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a, delta); | |
check_error(cudaPeekAtLastError()); | |
} | |