Spaces:
Sleeping
Sleeping
void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) | |
{ | |
int i; | |
float avg_loss = -1; | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
printf("%d\n", ngpus); | |
network **nets = calloc(ngpus, sizeof(network*)); | |
srand(time(0)); | |
int seed = rand(); | |
for(i = 0; i < ngpus; ++i){ | |
srand(seed); | |
cuda_set_device(gpus[i]); | |
nets[i] = load_network(cfgfile, weightfile, clear); | |
nets[i]->learning_rate *= ngpus; | |
} | |
srand(time(0)); | |
network *net = nets[0]; | |
int imgs = net->batch * net->subdivisions * ngpus; | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
list *options = read_data_cfg(datacfg); | |
char *backup_directory = option_find_str(options, "backup", "/backup/"); | |
char *train_list = option_find_str(options, "train", "data/train.list"); | |
int classes = option_find_int(options, "classes", 1); | |
list *plist = get_paths(train_list); | |
char **paths = (char **)list_to_array(plist); | |
printf("%d\n", plist->size); | |
int N = plist->size; | |
clock_t time; | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.threads = 32; | |
args.classes = classes; | |
args.min = net->min_ratio*net->w; | |
args.max = net->max_ratio*net->w; | |
args.angle = net->angle; | |
args.aspect = net->aspect; | |
args.exposure = net->exposure; | |
args.saturation = net->saturation; | |
args.hue = net->hue; | |
args.size = net->w; | |
args.paths = paths; | |
args.n = imgs; | |
args.m = N; | |
args.type = REGRESSION_DATA; | |
data train; | |
data buffer; | |
pthread_t load_thread; | |
args.d = &buffer; | |
load_thread = load_data(args); | |
int epoch = (*net->seen)/N; | |
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
time=clock(); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
load_thread = load_data(args); | |
printf("Loaded: %lf seconds\n", sec(clock()-time)); | |
time=clock(); | |
float loss = 0; | |
if(ngpus == 1){ | |
loss = train_network(net, train); | |
} else { | |
loss = train_networks(nets, ngpus, train, 4); | |
} | |
loss = train_network(net, train); | |
if(avg_loss == -1) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); | |
free_data(train); | |
if(*net->seen/N > epoch){ | |
epoch = *net->seen/N; | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
save_weights(net, buff); | |
} | |
if(get_current_batch(net)%100 == 0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup",backup_directory,base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s.weights", backup_directory, base); | |
save_weights(net, buff); | |
free_network(net); | |
free_ptrs((void**)paths, plist->size); | |
free_list(plist); | |
free(base); | |
} | |
void predict_regressor(char *cfgfile, char *weightfile, char *filename) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
clock_t time; | |
char buff[256]; | |
char *input = buff; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
}else{ | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input, 0, 0); | |
image sized = letterbox_image(im, net->w, net->h); | |
float *X = sized.data; | |
time=clock(); | |
float *predictions = network_predict(net, X); | |
printf("Predicted: %f\n", predictions[0]); | |
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
free_image(im); | |
free_image(sized); | |
if (filename) break; | |
} | |
} | |
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) | |
{ | |
printf("Regressor Demo\n"); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
list *options = read_data_cfg(datacfg); | |
int classes = option_find_int(options, "classes", 1); | |
char *name_list = option_find_str(options, "names", 0); | |
char **names = get_labels(name_list); | |
void * cap = open_video_stream(filename, cam_index, 0,0,0); | |
if(!cap) error("Couldn't connect to webcam.\n"); | |
float fps = 0; | |
while(1){ | |
struct timeval tval_before, tval_after, tval_result; | |
gettimeofday(&tval_before, NULL); | |
image in = get_image_from_stream(cap); | |
image crop = center_crop_image(in, net->w, net->h); | |
grayscale_image_3c(crop); | |
float *predictions = network_predict(net, crop.data); | |
printf("\033[2J"); | |
printf("\033[1;1H"); | |
printf("\nFPS:%.0f\n",fps); | |
int i; | |
for(i = 0; i < classes; ++i){ | |
printf("%s: %f\n", names[i], predictions[i]); | |
} | |
show_image(crop, "Regressor", 10); | |
free_image(in); | |
free_image(crop); | |
gettimeofday(&tval_after, NULL); | |
timersub(&tval_after, &tval_before, &tval_result); | |
float curr = 1000000.f/((long int)tval_result.tv_usec); | |
fps = .9*fps + .1*curr; | |
} | |
} | |
void run_regressor(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); | |
int *gpus = 0; | |
int gpu = 0; | |
int ngpus = 0; | |
if(gpu_list){ | |
printf("%s\n", gpu_list); | |
int len = strlen(gpu_list); | |
ngpus = 1; | |
int i; | |
for(i = 0; i < len; ++i){ | |
if (gpu_list[i] == ',') ++ngpus; | |
} | |
gpus = calloc(ngpus, sizeof(int)); | |
for(i = 0; i < ngpus; ++i){ | |
gpus[i] = atoi(gpu_list); | |
gpu_list = strchr(gpu_list, ',')+1; | |
} | |
} else { | |
gpu = gpu_index; | |
gpus = &gpu; | |
ngpus = 1; | |
} | |
int cam_index = find_int_arg(argc, argv, "-c", 0); | |
int clear = find_arg(argc, argv, "-clear"); | |
char *data = argv[3]; | |
char *cfg = argv[4]; | |
char *weights = (argc > 5) ? argv[5] : 0; | |
char *filename = (argc > 6) ? argv[6]: 0; | |
if(0==strcmp(argv[2], "test")) predict_regressor(data, cfg, weights); | |
else if(0==strcmp(argv[2], "train")) train_regressor(data, cfg, weights, gpus, ngpus, clear); | |
else if(0==strcmp(argv[2], "demo")) demo_regressor(data, cfg, weights, cam_index, filename); | |
} | |