Spaces:
Sleeping
Sleeping
void train_cifar(char *cfgfile, char *weightfile) | |
{ | |
srand(time(0)); | |
float avg_loss = -1; | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
network *net = load_network(cfgfile, weightfile, 0); | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
char *backup_directory = "/home/pjreddie/backup/"; | |
int classes = 10; | |
int N = 50000; | |
char **labels = get_labels("data/cifar/labels.txt"); | |
int epoch = (*net->seen)/N; | |
data train = load_all_cifar10(); | |
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
clock_t time=clock(); | |
float loss = train_network_sgd(net, train, 1); | |
if(avg_loss == -1) avg_loss = loss; | |
avg_loss = avg_loss*.95 + loss*.05; | |
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); | |
if(*net->seen/N > epoch){ | |
epoch = *net->seen/N; | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
save_weights(net, buff); | |
} | |
if(get_current_batch(net)%100 == 0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup",backup_directory,base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s.weights", backup_directory, base); | |
save_weights(net, buff); | |
free_network(net); | |
free_ptrs((void**)labels, classes); | |
free(base); | |
free_data(train); | |
} | |
void train_cifar_distill(char *cfgfile, char *weightfile) | |
{ | |
srand(time(0)); | |
float avg_loss = -1; | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
network *net = load_network(cfgfile, weightfile, 0); | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
char *backup_directory = "/home/pjreddie/backup/"; | |
int classes = 10; | |
int N = 50000; | |
char **labels = get_labels("data/cifar/labels.txt"); | |
int epoch = (*net->seen)/N; | |
data train = load_all_cifar10(); | |
matrix soft = csv_to_matrix("results/ensemble.csv"); | |
float weight = .9; | |
scale_matrix(soft, weight); | |
scale_matrix(train.y, 1. - weight); | |
matrix_add_matrix(soft, train.y); | |
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
clock_t time=clock(); | |
float loss = train_network_sgd(net, train, 1); | |
if(avg_loss == -1) avg_loss = loss; | |
avg_loss = avg_loss*.95 + loss*.05; | |
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); | |
if(*net->seen/N > epoch){ | |
epoch = *net->seen/N; | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
save_weights(net, buff); | |
} | |
if(get_current_batch(net)%100 == 0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup",backup_directory,base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s.weights", backup_directory, base); | |
save_weights(net, buff); | |
free_network(net); | |
free_ptrs((void**)labels, classes); | |
free(base); | |
free_data(train); | |
} | |
void test_cifar_multi(char *filename, char *weightfile) | |
{ | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
float avg_acc = 0; | |
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); | |
int i; | |
for(i = 0; i < test.X.rows; ++i){ | |
image im = float_to_image(32, 32, 3, test.X.vals[i]); | |
float pred[10] = {0}; | |
float *p = network_predict(net, im.data); | |
axpy_cpu(10, 1, p, 1, pred, 1); | |
flip_image(im); | |
p = network_predict(net, im.data); | |
axpy_cpu(10, 1, p, 1, pred, 1); | |
int index = max_index(pred, 10); | |
int class = max_index(test.y.vals[i], 10); | |
if(index == class) avg_acc += 1; | |
free_image(im); | |
printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1)); | |
} | |
} | |
void test_cifar(char *filename, char *weightfile) | |
{ | |
network *net = load_network(filename, weightfile, 0); | |
srand(time(0)); | |
clock_t time; | |
float avg_acc = 0; | |
float avg_top5 = 0; | |
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); | |
time=clock(); | |
float *acc = network_accuracies(net, test, 2); | |
avg_acc += acc[0]; | |
avg_top5 += acc[1]; | |
printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows); | |
free_data(test); | |
} | |
void extract_cifar() | |
{ | |
char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"}; | |
int i; | |
data train = load_all_cifar10(); | |
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); | |
for(i = 0; i < train.X.rows; ++i){ | |
image im = float_to_image(32, 32, 3, train.X.vals[i]); | |
int class = max_index(train.y.vals[i], 10); | |
char buff[256]; | |
sprintf(buff, "data/cifar/train/%d_%s",i,labels[class]); | |
save_image_options(im, buff, PNG, 0); | |
} | |
for(i = 0; i < test.X.rows; ++i){ | |
image im = float_to_image(32, 32, 3, test.X.vals[i]); | |
int class = max_index(test.y.vals[i], 10); | |
char buff[256]; | |
sprintf(buff, "data/cifar/test/%d_%s",i,labels[class]); | |
save_image_options(im, buff, PNG, 0); | |
} | |
} | |
void test_cifar_csv(char *filename, char *weightfile) | |
{ | |
network *net = load_network(filename, weightfile, 0); | |
srand(time(0)); | |
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); | |
matrix pred = network_predict_data(net, test); | |
int i; | |
for(i = 0; i < test.X.rows; ++i){ | |
image im = float_to_image(32, 32, 3, test.X.vals[i]); | |
flip_image(im); | |
} | |
matrix pred2 = network_predict_data(net, test); | |
scale_matrix(pred, .5); | |
scale_matrix(pred2, .5); | |
matrix_add_matrix(pred2, pred); | |
matrix_to_csv(pred); | |
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1)); | |
free_data(test); | |
} | |
void test_cifar_csvtrain(char *cfg, char *weights) | |
{ | |
network *net = load_network(cfg, weights, 0); | |
srand(time(0)); | |
data test = load_all_cifar10(); | |
matrix pred = network_predict_data(net, test); | |
int i; | |
for(i = 0; i < test.X.rows; ++i){ | |
image im = float_to_image(32, 32, 3, test.X.vals[i]); | |
flip_image(im); | |
} | |
matrix pred2 = network_predict_data(net, test); | |
scale_matrix(pred, .5); | |
scale_matrix(pred2, .5); | |
matrix_add_matrix(pred2, pred); | |
matrix_to_csv(pred); | |
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1)); | |
free_data(test); | |
} | |
void eval_cifar_csv() | |
{ | |
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); | |
matrix pred = csv_to_matrix("results/combined.csv"); | |
fprintf(stderr, "%d %d\n", pred.rows, pred.cols); | |
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1)); | |
free_data(test); | |
free_matrix(pred); | |
} | |
void run_cifar(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *cfg = argv[3]; | |
char *weights = (argc > 4) ? argv[4] : 0; | |
if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights); | |
else if(0==strcmp(argv[2], "extract")) extract_cifar(); | |
else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights); | |
else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights); | |
else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights); | |
else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights); | |
else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights); | |
else if(0==strcmp(argv[2], "eval")) eval_cifar_csv(); | |
} | |