open-o1 / app /app.py
tikendraw's picture
import fix
ba30576
raw
history blame
6.14 kB
import time
import streamlit as st
from core.generation_utils import generate_answer, load_llm
from core.types import ThoughtStepsDisplay, BigMessage
from .app_config import InputConfig, ENV_FILE_PATH, CONFIG_FILE_PATH
import litellm
import os
import webbrowser
def star_repo():
webbrowser.open("https://github.com/tikendraw/open-o1")
def config_sidebar(config:InputConfig) -> InputConfig:
star = st.sidebar.button("Star the Repo!")
if star:
star_repo()
st.sidebar.header('Configuration')
model_name = st.sidebar.text_input('Model Name: e.g. provider/model-name',value=config.model_name, placeholder='openai/gpt-3.5-turbo')
model_api_key = st.sidebar.text_input('API Key: ',type='password',value=config.model_api_key, placeholder='sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')
max_tokens = st.sidebar.number_input('Max Tokens per Thought: ',value=config.max_tokens, min_value=1)
max_steps = st.sidebar.number_input('Max Thinking Steps: ',value=config.max_steps, min_value=1, step=1, )
temperature = st.sidebar.number_input('Temperature: ',value=config.temperature, min_value=0.0, step=0.1, max_value=10.0)
timeout = st.sidebar.number_input('Timeout(seconds): ',value=config.timeout, min_value=0.0,step = 1.0)
sleeptime = st.sidebar.number_input('Sleep Time(seconds)',value=config.sleeptime, min_value=0.0, step = 1.0, help='Time between requests to avoid hitting rate limit')
force_max_steps = st.sidebar.checkbox('Force Max Steps', value=config.force_max_steps, help="If checked, will generate given number of max steps. If not checked, assistant can stop at few step thinking it has the right answer.")
config.model_name = model_name
config.model_api_key = model_api_key
config.max_tokens = max_tokens
config.max_steps = max_steps
config.temperature = temperature
config.timeout = timeout
config.sleeptime = sleeptime
config.force_max_steps = force_max_steps
c1, c2 = st.sidebar.columns(2)
with c1:
save_config = c1.button('Save config')
with c2:
delete_key = c2.button('Delete Key')
if save_config:
config.save(env_file=ENV_FILE_PATH, config_file=CONFIG_FILE_PATH)
st.sidebar.success('Config saved!')
if delete_key:
config.model_api_key = ''
config.save(env_file=ENV_FILE_PATH, config_file=CONFIG_FILE_PATH)
config = InputConfig.load(env_file=ENV_FILE_PATH, config_file=CONFIG_FILE_PATH)
st.sidebar.success('Key deleted!')
return config
def main():
st.set_page_config(page_title="Open-o1", page_icon="🧠", layout="wide")
st.title('Open-O1')
st.write('Welcome to Open-O1!')
config = InputConfig.load(env_file=ENV_FILE_PATH, config_file=CONFIG_FILE_PATH)
config = config_sidebar(config=config)
llm = load_llm(config)
is_vision_llm = litellm.supports_vision(model=config.model_name) # will use it someday
current_tab='o1_tab'
big_message_attr_name = f"{current_tab}_big_messages"
clear_chat_bt = st.sidebar.button('Clear Chat')
if clear_chat_bt:
delattr(st.session_state, big_message_attr_name)
big_message_attr = set_and_get_state_attr(big_message_attr_name, default_value=[])
# this prints the older messages
for message in big_message_attr:
with st.chat_message(message.role):
for thought in message.thoughts:
print_thought(thought, is_final=False)
if message.content:
if message.role == 'user':
st.markdown(message.content)
else:
print_thought(message.content, is_final=True)
if user_input := st.chat_input("What is up bro?"):
big_message_attr.append(BigMessage(role="user", content=user_input, thoughts=[]))
with st.chat_message("user"):
st.markdown(user_input)
with st.chat_message("assistant"):
thoughts = []
messages = [message.to_message() for message in big_message_attr]
messages[-1]['content'] += ", json format" #add json keyword in user message , helps in json output
start_time = time.time()
with st.status("Thinking...", expanded=True) as status:
for step in generate_answer(
messages=messages,
max_steps=config.max_steps,
stream=False,
max_tokens=config.max_tokens,
temperature=config.temperature,
sleeptime=config.sleeptime,
timeout=config.timeout,
llm=llm,
force_max_steps=config.force_max_steps,
response_format={ "type": "json_object" }
):
thoughts.append(step)
st.markdown('---')
st.write(step.md())
status.update(label=step.step_title, state="running", expanded=False)
status.update(
label=f"Thought for {time.time()-start_time:.2f} seconds", state="complete", expanded=False
)
last_step = thoughts.pop()
print_thought(last_step, is_final=True)
big_message_attr.append(BigMessage(
role="assistant",
content=last_step,
thoughts=thoughts
))
def set_and_get_state_attr(attr_name:str, default_value:any=None) -> any:
if attr_name not in st.session_state:
setattr(st.session_state, attr_name, default_value)
return getattr(st.session_state, attr_name)
def print_thought(thought:ThoughtStepsDisplay, is_final:bool=False):
if is_final:
st.markdown(thought.md())
else:
with st.expander(f'{thought.step_title}'):
st.markdown(thought.md())