import os import webbrowser from pathlib import Path import streamlit as st import tensorflow as tf import config from src import data_preprocessing, utils MODEL_PATH = Path(config.MODEL_DIR) / config.MODEL_FILENAME VECTORIZER_PATH = Path(config.MODEL_DIR) / config.TEXT_VECTOR_FILENAME def load_model_and_vectorizer(vectorizer_path, model_path): try: text_vectorizer = utils.load_text_vectorizer(vectorizer_path) lstm_model = tf.keras.models.load_model(model_path) return text_vectorizer, lstm_model except Exception as e: return None, None def predict_sentiment(title, text, text_vectorizer, lstm_model): review = f'{title} {text}' # concatenate the title and text clean_review = data_preprocessing.clean_text(review) review_sequence = text_vectorizer([clean_review]) prediction = lstm_model.predict(review_sequence) sentiment_score = prediction[0][0] sentiment_label = 'Positive' if sentiment_score >= 0.5 else 'Negative' return sentiment_label, sentiment_score # Introduction and Project Information st.title("Amazon Review Sentiment Analysis") st.write("This is a Streamlit app for performing sentiment analysis on Amazon reviews.") st.write("Enter the title and text of the review to analyze its sentiment.") # User Inputs review_title = st.text_input("Enter the review title:") review_text = st.text_area("Enter the review text:(required)") submit = st.button("Analyze Sentiment") text_vectorizer, lstm_model = load_model_and_vectorizer( VECTORIZER_PATH, MODEL_PATH) if text_vectorizer is None or lstm_model is None: st.error('Could not load text vectorizer and model. Aborting prediction.') # Perform Sentiment Analysis if submit: with st.spinner(): sentiment_label, sentiment_score = predict_sentiment(review_title, review_text, text_vectorizer, lstm_model) new_sentiment_score= abs(0.5 - sentiment_score)*2 if sentiment_score >=0.5: st.success(f"Sentiment: {sentiment_label} (Score: {new_sentiment_score:.2f})") else: st.error(f"Sentiment: {sentiment_label} (Score: {new_sentiment_score:.2f})") # Project Usage and Links st.sidebar.write("## Project Usage") st.sidebar.write("This project performs sentiment analysis on Amazon reviews to determine whether a review's sentiment is positive or negative.") st.sidebar.write("## GitHub Repository") st.sidebar.write("Source Code here [GitHub repository](https://github.com/tikendraw/Amazon-review-sentiment-analysis).") st.sidebar.write("If you have any feedback or suggestions, feel free to open an issue or a pull request.") st.sidebar.write("## Like the Project?") st.sidebar.write("If you find this project interesting or useful, don't forget to give it a star on GitHub!") st.sidebar.markdown('![GitHub Repo stars](https://img.shields.io/github/stars/tikendraw/Amazon-review-sentiment-analysis?style=flat&logo=github&logoColor=white&label=Github%20Stars)', unsafe_allow_html=True) st.sidebar.write('### Created by:') c1, c2 = st.sidebar.columns([4,4]) c1.image('./src/me.jpg', width=150) c2.write('### Tikendra Kumar Sahu') st.sidebar.write('Data Science Enthusiast') githubb = st.sidebar.button('Github') linkedin = st.sidebar.button('LinkdIn') instagram = st.sidebar.button('Instagram') if githubb: webbrowser.open('https://github.com/tikendraw') if linkedin: webbrowser.open('https://www.linkedin.com/in/tikendraw/') if instagram: webbrowser.open('https://www.instagram.com/tikendraw/')