File size: 15,697 Bytes
67a2097 e2db9fa c802685 67a2097 d0faeb3 67a2097 468aa37 67a2097 d744d35 67a2097 d744d35 e2db9fa 67a2097 f0cf210 468aa37 f0cf210 468aa37 81d4cc5 468aa37 81d4cc5 468aa37 81d4cc5 468aa37 f0cf210 468aa37 67a2097 c802685 67a2097 468aa37 67a2097 468aa37 67a2097 a4c7b98 67a2097 a4c7b98 468aa37 a4c7b98 67a2097 468aa37 67a2097 e3aef30 8b5e299 e3aef30 71485a1 67a2097 8172dbd 67a2097 468aa37 67a2097 468aa37 df09df6 468aa37 67a2097 468aa37 e2db9fa 468aa37 67a2097 468aa37 67a2097 468aa37 67a2097 468aa37 67a2097 468aa37 67a2097 468aa37 67a2097 468aa37 67a2097 468aa37 67a2097 d744d35 67a2097 468aa37 67a2097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import os
import time
import re
from typing import Union, AnyStr
from urllib.parse import urlparse, parse_qs
import textwrap
import streamlit as st
import openai
from openai import OpenAI
from pydub import AudioSegment
from youtube_transcript_api import YouTubeTranscriptApi
from deep_translator import GoogleTranslator
import yt_dlp as youtube_dl
from transformers import AutoModelForCausalLM, GPT2Tokenizer
import torch
from tqdm import trange
import torch.nn.functional as F
client = OpenAI(
api_key='sk-proj-Yzjez2g6rfAiVPpb3cfJT3BlbkFJRLU4ZQpMhyLJDf0XksF4'
)
def generate_response(article_text, lang ):
messages=[
{"role": "system", "content": "You are an expert in summarizing text in two languages: English and Vietnamese"},
{"role": "user", "content": f"summarize the following text professionally and return the summary according to the input language:\n{article_text}\nSummary:"}
]
if lang == 'vi':
messages=[
{"role": "system", "content": "Bạn là chuyên gia tóm tắt văn bản bằng hai ngôn ngữ: tiếng Anh và tiếng Việt"},
{"role": "user", "content": f"hãy tóm tắt văn bản sau đây một cách chuyên nghiệp và trả về bản tóm tắt theo ngôn ngữ đầu vào:\n{article_text}\nBản Tóm tắt:"}
]
response = client.chat.completions.create(
model='ft:gpt-3.5-turbo-0125:personal::9eZjpJwa' ,
messages=messages,
max_tokens=150, # Tăng lên để có thêm không gian cho tóm tắt
temperature=0.3, # Giảm xuống để tạo ra nội dung tập trung hơn
top_p=0.95, # Tăng nhẹ để mở rộng phạm vi từ vựng
frequency_penalty=0.5, # Tăng lên để khuyến khích đa dạng từ ngữ
presence_penalty=0.5 # Tăng lên để khuyến khích đề cập đến các chủ đề mới
)
# Extract and return the generated summary
summary = response.choices[0].message.content.strip()
return summary
def cleaning_input(input_text):
from html import unescape
text = str(input_text)
text = re.sub(r'\n\s*\n', '\n', text)
text = re.sub(r'[ ]+', ' ', text)
text = re.sub(r'\.{2,}', '.', text)
text = re.sub(r',{2,}', ',', text)
text = re.sub(r'-{2,}', '-', text)
text = re.sub(r'_{2,}', '_', text)
text = re.sub(r'!{2,}', '!', text)
text = re.sub(r'\?{2,}', '?', text)
text = re.sub(r'(\d)([A-Za-z])', r'\1 \2', text)
text = re.sub(r'([A-Za-z])(\d)', r'\1 \2', text)
text = unescape(text)
text = re.sub(r'[^\w\s\[\]\(\)\$\\.\n\/:#<>{},_"!@\\-\\*=\\]', '', text)
text = re.sub(r'\s+', ' ', text)
return text
def top_k_top_p_filtering(logits, top_k, top_p, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_seq(model, context, length, device, temperature, top_k, top_p):
""" Generates a sequence of tokens
Args:
model: gpt/gpt2 model
context: tokenized text using gpt/gpt2 tokenizer
length: length of generated sequence.
device: torch.device object.
temperature >0: used to control the randomness of predictions by scaling the logits before applying softmax.
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
"""
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0)
generated = context
with torch.no_grad():
for _ in trange(length):
inputs = {'input_ids': generated}
outputs = model(
**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
return generated
def add_special_tokens(lang):
""" Returns GPT2 tokenizer after adding separator and padding tokens """
token = 'gpt2'
if lang =='vi':
token = 'NlpHUST/gpt2-vietnamese'
tokenizer = GPT2Tokenizer.from_pretrained(token)
special_tokens = {'pad_token': '<|pad|>', 'sep_token': '<|sep|>'}
tokenizer.add_special_tokens(special_tokens)
return tokenizer
def gene(t,a):
tokenizer = add_special_tokens(a)
article = tokenizer.encode(t)[:900]
# Load model directly
model = AutoModelForCausalLM.from_pretrained("tiennlu/GPT2en_CNNen_3k")
if a=="vi":
model = AutoModelForCausalLM.from_pretrained("tiennlu/GPT2vi_CNNvi_3k")
generated_text = sample_seq(model, article, 50, torch.device('cpu'), temperature=1, top_k=10, top_p=0.5)
generated_text = generated_text[0, len(article):].tolist()
text = tokenizer.convert_ids_to_tokens(generated_text, skip_special_tokens=True)
text = tokenizer.convert_tokens_to_string(text)
return text
def find_audio_files(path, extension=".mp3"):
audio_files = []
for root, dirs, files in os.walk(path):
for f in files:
if f.endswith(extension):
audio_files.append(os.path.join(root, f))
return audio_files
def youtube_to_mp3(youtube_url: str, output_dir: str) -> Union[AnyStr, str, bytes]:
ydl_config = {
"format": "bestaudio/best",
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "mp3",
"preferredquality": "192",
}
],
"outtmpl": os.path.join(output_dir, "%(title)s.%(ext)s"),
"verbose": True,
}
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with youtube_dl.YoutubeDL(ydl_config) as ydl:
ydl.download([youtube_url])
return find_audio_files(output_dir)[0]
def chunk_audio(filename, segment_length: int, output_dir):
"""segment lenght is in seconds"""
# print(f"Chunking audio to {segment_length} second segments...")
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
# Load audio file
audio = AudioSegment.from_mp3(filename)
# Calculate duration in milliseconds
duration = len(audio)
# Calculate number of segments
num_segments = duration // (segment_length * 1000) + 1
print(f"Chunking {num_segments} chunks...")
# Iterate through segments and save them
for i in range(num_segments):
start = i * segment_length * 1000
end = min((i + 1) * segment_length * 1000, duration)
segment = audio[start:end]
segment.export(os.path.join(output_dir, f"segment_{i}.mp3"), format="mp3")
chunked_audio_files = find_audio_files(output_dir)
return sorted(chunked_audio_files)
def translate_text(text):
wrapped_text = textwrap.wrap(text, 3500)
tran_text = ""
for line in wrapped_text:
translation = GoogleTranslator(source='en', target='vi').translate(line)
tran_text += translation + " "
return tran_text
def transcribe_audio(audio_files: list, model_name="whisper-1"):
transcripts = ""
for audio_file in audio_files:
audio = open(audio_file, "rb")
try:
response = completions_with_backoff(
model=model_name, file=audio, response_format="text"
)
transcripts += response.text + " "
except openai.OpenAIError as e:
print(f"An error occurred: {e}")
return None
return transcripts
import random
# define a retry decorator
def retry_with_exponential_backoff(
func,
initial_delay: float = 1,
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 10,
errors: tuple = (openai.RateLimitError,),
):
def wrapper(*args, **kwargs):
num_retries = 0
delay = initial_delay
while True:
try:
return func(*args, **kwargs)
except errors as e:
print(f"Error: {e}")
num_retries += 1
if num_retries > max_retries:
raise Exception(f"Maximum number of retries ({max_retries}) exceeded.")
delay *= exponential_base * (1 + jitter * random.random())
time.sleep(delay)
except Exception as e:
raise e
return wrapper
@retry_with_exponential_backoff
def completions_with_backoff(**kwargs):
return client.audio.translations.create(**kwargs)
def get_video_id(youtube_url):
"""Extract video ID from YouTube URL."""
parsed_url = urlparse(youtube_url)
video_id = parse_qs(parsed_url.query).get("v")
return video_id[0] if video_id else None
def get_transcript(video_id):
tran = []
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
transcript = transcript_list.find_generated_transcript(['vi','en'])
translated_transcript = transcript.translate('en')
transcript_data = translated_transcript.fetch()
tran += [t['text'] for t in transcript_data if t['text'] != '[music]']
return ' '.join(tran)
def chunk_text(text, chunk_size=1000, overlap_size=24):
encoder = RecursiveCharacterTextSplitter().from_tiktoken_encoder(model_name="gpt-3.5-turbo", chunk_size=chunk_size,
chunk_overlap=overlap_size)
return encoder.split_text(text=text)
def summarize_youtube_video(youtube_url, outputs_dir):
# Tạo đường dẫn đầy đủ cho thư mục đầu ra
video_id = get_video_id(youtube_url)
en_transcript = get_transcript(video_id)
if not os.path.exists(outputs_dir):
os.makedirs(outputs_dir)
if not en_transcript:
outputs_dir = f"{outputs_dir}\\{video_id}"
raw_audio_dir = f"{outputs_dir}\\raw_audio\\"
chunks_dir = f"{outputs_dir}\\chunks"
segment_length = 10 * 60 # chunk to 10 minute segments
if not os.path.exists(outputs_dir):
os.makedirs(outputs_dir)
audio_filename = youtube_to_mp3(youtube_url, output_dir=raw_audio_dir)
chunked_audio_files = chunk_audio(
audio_filename, segment_length=segment_length, output_dir=chunks_dir
)
en_transcript = transcribe_audio(chunked_audio_files)
en_transcript = cleaning_input(en_transcript)
vi_transcript = translate_text(en_transcript)
summ_en = summary(en_transcript, 'en')
summ_vi = summary(vi_transcript, 'vi')
return tuple(summ_en), tuple(summ_vi)
def main():
st.set_page_config(layout="wide")
st.title("YouTube Video Summarizer 🎥")
st.markdown('<style>h1{color: orange; text-align: center;}</style>', unsafe_allow_html=True)
st.subheader('Built with the GPT2, Streamlit and ❤️')
st.markdown('<style>h3{color: pink; text-align: center;}</style>', unsafe_allow_html=True)
# Expander for app details
with st.expander("About the App"):
st.write("This app allows you to summarize while watching a YouTube video.")
st.write(
"Enter a YouTube URL in the input box below and click 'Submit' to start. This app is built by AI Anytime.")
# Input box for YouTube URL
youtube_url = st.text_input("Enter YouTube URL")
# Submit button
if st.button("Submit") and youtube_url:
start_time = time.time() # Start the timer
summ, tran = summarize_youtube_video(youtube_url, "./outputs")
sum = summ[0]
script = summ[1]
sum_tran = tran[0]
script_tran = tran[1]
end_time = time.time() # End the timer
elapsed_time = end_time - start_time
# Centering the video and elapsed time
st.markdown("""
<div style="display: flex; justify-content: center; flex-direction: column; align-items: center;">
<div style="width: 60%; max-width: 720px;">
<iframe width="100%" height="315" src="{youtube_url}" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</div>
<h2>Summarization of YouTube Video</h2>
<p>Time taken: {elapsed_time:.2f} seconds</p>
</div>
""".format(youtube_url=youtube_url.replace("watch?v=", "embed/"), elapsed_time=elapsed_time),
unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.subheader("Transcript english")
st.markdown(
f'<div style="height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">{script}</div>',
unsafe_allow_html=True)
st.subheader("Summary english")
st.write(sum)
with col2:
st.subheader("Transcript vietnamese")
st.markdown(
f'<div style="height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">{script_tran}</div>',
unsafe_allow_html=True)
st.subheader("Summary vietnamese")
st.write(sum_tran)
from langchain.text_splitter import RecursiveCharacterTextSplitter
def chunk_overlap_text(text, chunk_size=1000, overlap_size=24):
return RecursiveCharacterTextSplitter().from_tiktoken_encoder(model_name="gpt-3.5-turbo", chunk_size=chunk_size,
chunk_overlap=overlap_size).split_text(text=text)
def summary(text, lang):
chunks = chunk_overlap_text(text)
rs = ""
print(len(chunks[0]))
print(f"Number of chunks: {len(chunks)}")
for t in chunks:
generated_summary = generate_response(t, lang)
rs += generated_summary + " "
text = ""
for t in chunks:
text += t + " "
return rs, text
if __name__ == "__main__":
main()
|