File size: 15,697 Bytes
67a2097
 
e2db9fa
c802685
67a2097
 
 
d0faeb3
67a2097
 
 
 
 
468aa37
 
 
 
67a2097
d744d35
67a2097
d744d35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2db9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a2097
f0cf210
468aa37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0cf210
468aa37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d4cc5
468aa37
81d4cc5
 
 
 
468aa37
 
 
 
 
 
81d4cc5
468aa37
 
 
 
 
f0cf210
468aa37
 
 
 
 
67a2097
 
 
 
 
 
 
 
 
 
 
c802685
67a2097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468aa37
67a2097
 
 
468aa37
67a2097
 
 
 
 
 
 
 
 
a4c7b98
 
 
 
 
 
 
 
67a2097
 
 
a4c7b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468aa37
a4c7b98
 
67a2097
 
 
 
 
 
 
468aa37
67a2097
e3aef30
8b5e299
e3aef30
71485a1
 
67a2097
 
 
8172dbd
67a2097
 
 
 
 
468aa37
67a2097
 
468aa37
df09df6
 
468aa37
67a2097
 
 
 
 
 
 
 
 
 
468aa37
e2db9fa
468aa37
 
 
 
67a2097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468aa37
67a2097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468aa37
67a2097
 
 
468aa37
67a2097
 
 
468aa37
67a2097
 
 
468aa37
67a2097
 
468aa37
67a2097
 
 
468aa37
67a2097
 
 
 
 
 
 
 
 
 
 
d744d35
67a2097
 
 
 
 
 
468aa37
67a2097
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import time
import re
from typing import Union, AnyStr
from urllib.parse import urlparse, parse_qs
import textwrap
import streamlit as st
import openai
from openai import OpenAI
from pydub import AudioSegment
from youtube_transcript_api import YouTubeTranscriptApi
from deep_translator import GoogleTranslator
import yt_dlp as youtube_dl
from transformers import  AutoModelForCausalLM, GPT2Tokenizer
import torch
from tqdm import trange
import torch.nn.functional as F
client = OpenAI(
    api_key='sk-proj-Yzjez2g6rfAiVPpb3cfJT3BlbkFJRLU4ZQpMhyLJDf0XksF4'
)
 
def generate_response(article_text, lang ):
    messages=[
                 {"role": "system", "content": "You are an expert in summarizing text in two languages: English and Vietnamese"},
             {"role": "user", "content": f"summarize the following text professionally and return the summary according to the input language:\n{article_text}\nSummary:"}
            ]
    if lang == 'vi':
        messages=[
                 {"role": "system", "content": "Bạn là chuyên gia tóm tắt văn bản bằng hai ngôn ngữ: tiếng Anh và tiếng Việt"},
             {"role": "user", "content": f"hãy tóm tắt văn bản sau đây một cách chuyên nghiệp và trả về bản tóm tắt theo ngôn ngữ đầu vào:\n{article_text}\nBản Tóm tắt:"}
            ]
    response = client.chat.completions.create(
            model='ft:gpt-3.5-turbo-0125:personal::9eZjpJwa' ,
            messages=messages,
           max_tokens=150,         # Tăng lên để có thêm không gian cho tóm tắt
    temperature=0.3,        # Giảm xuống để tạo ra nội dung tập trung hơn
    top_p=0.95,             # Tăng nhẹ để mở rộng phạm vi từ vựng
    frequency_penalty=0.5,  # Tăng lên để khuyến khích đa dạng từ ngữ
    presence_penalty=0.5    # Tăng lên để khuyến khích đề cập đến các chủ đề mới
        )

        # Extract and return the generated summary
    summary = response.choices[0].message.content.strip()
    return summary
def cleaning_input(input_text):
    from html import unescape
    text = str(input_text)
    text = re.sub(r'\n\s*\n', '\n', text)
    text = re.sub(r'[ ]+', ' ', text)
    text = re.sub(r'\.{2,}', '.', text)
    text = re.sub(r',{2,}', ',', text)
    text = re.sub(r'-{2,}', '-', text)
    text = re.sub(r'_{2,}', '_', text)
    text = re.sub(r'!{2,}', '!', text)
    text = re.sub(r'\?{2,}', '?', text)
    text = re.sub(r'(\d)([A-Za-z])', r'\1 \2', text)
    text = re.sub(r'([A-Za-z])(\d)', r'\1 \2', text)
    text = unescape(text)
    text = re.sub(r'[^\w\s\[\]\(\)\$\\.\n\/:#<>{},_"!@\\-\\*=\\]', '', text)
    text = re.sub(r'\s+', ' ', text)
    return text

def top_k_top_p_filtering(logits, top_k, top_p, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits

def sample_seq(model, context, length, device, temperature, top_k, top_p):
    """ Generates a sequence of tokens 
        Args:
            model: gpt/gpt2 model
            context: tokenized text using gpt/gpt2 tokenizer
            length: length of generated sequence.
            device: torch.device object.
            temperature >0: used to control the randomness of predictions by scaling the logits before applying softmax.
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
    """

    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0)
    generated = context
    with torch.no_grad():
        for _ in trange(length):
            inputs = {'input_ids': generated}
            outputs = model(
                **inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][0, -1, :] / temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
    return generated
def add_special_tokens(lang):
    """ Returns GPT2 tokenizer after adding separator and padding tokens """
    token = 'gpt2'
    if lang =='vi':
        token = 'NlpHUST/gpt2-vietnamese'
    tokenizer = GPT2Tokenizer.from_pretrained(token)
    special_tokens = {'pad_token': '<|pad|>', 'sep_token': '<|sep|>'}
    tokenizer.add_special_tokens(special_tokens)
    return tokenizer

def gene(t,a):

    tokenizer = add_special_tokens(a)
    article = tokenizer.encode(t)[:900]
    # Load model directly
    model = AutoModelForCausalLM.from_pretrained("tiennlu/GPT2en_CNNen_3k")
    if a=="vi":
        model = AutoModelForCausalLM.from_pretrained("tiennlu/GPT2vi_CNNvi_3k")
    generated_text = sample_seq(model, article, 50, torch.device('cpu'), temperature=1, top_k=10, top_p=0.5)
    generated_text = generated_text[0, len(article):].tolist()
    text = tokenizer.convert_ids_to_tokens(generated_text, skip_special_tokens=True)
    text = tokenizer.convert_tokens_to_string(text)
    return text


def find_audio_files(path, extension=".mp3"):
    audio_files = []
    for root, dirs, files in os.walk(path):
        for f in files:
            if f.endswith(extension):
                audio_files.append(os.path.join(root, f))

    return audio_files


def youtube_to_mp3(youtube_url: str, output_dir: str) -> Union[AnyStr, str, bytes]:
    ydl_config = {
        "format": "bestaudio/best",
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "mp3",
                "preferredquality": "192",
            }
        ],
        "outtmpl": os.path.join(output_dir, "%(title)s.%(ext)s"),
        "verbose": True,
    }

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    with youtube_dl.YoutubeDL(ydl_config) as ydl:
        ydl.download([youtube_url])

    return find_audio_files(output_dir)[0]


def chunk_audio(filename, segment_length: int, output_dir):
    """segment lenght is in seconds"""

    # print(f"Chunking audio to {segment_length} second segments...")

    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    # Load audio file
    audio = AudioSegment.from_mp3(filename)
    # Calculate duration in milliseconds
    duration = len(audio)

    # Calculate number of segments
    num_segments = duration // (segment_length * 1000) + 1

    print(f"Chunking {num_segments} chunks...")

    # Iterate through segments and save them
    for i in range(num_segments):
        start = i * segment_length * 1000
        end = min((i + 1) * segment_length * 1000, duration)
        segment = audio[start:end]
        segment.export(os.path.join(output_dir, f"segment_{i}.mp3"), format="mp3")

    chunked_audio_files = find_audio_files(output_dir)
    return sorted(chunked_audio_files)


def translate_text(text):
    wrapped_text = textwrap.wrap(text, 3500)
    tran_text = ""
    for line in wrapped_text:
        translation = GoogleTranslator(source='en', target='vi').translate(line)
        tran_text += translation + " "

    return tran_text


def transcribe_audio(audio_files: list, model_name="whisper-1"):
    transcripts = ""
    for audio_file in audio_files:
        audio = open(audio_file, "rb")
        try:
            response = completions_with_backoff(
                model=model_name, file=audio, response_format="text"
            )
            transcripts += response.text + " "
        except openai.OpenAIError as e:
            print(f"An error occurred: {e}")
            return None
    return transcripts


import random


# define a retry decorator
def retry_with_exponential_backoff(
        func,
        initial_delay: float = 1,
        exponential_base: float = 2,
        jitter: bool = True,
        max_retries: int = 10,
        errors: tuple = (openai.RateLimitError,),
):
    def wrapper(*args, **kwargs):
        num_retries = 0
        delay = initial_delay
        while True:
            try:
                return func(*args, **kwargs)
            except errors as e:
                print(f"Error: {e}")
                num_retries += 1
                if num_retries > max_retries:
                    raise Exception(f"Maximum number of retries ({max_retries}) exceeded.")
                delay *= exponential_base * (1 + jitter * random.random())
                time.sleep(delay)
            except Exception as e:
                raise e

    return wrapper


@retry_with_exponential_backoff
def completions_with_backoff(**kwargs):
    return client.audio.translations.create(**kwargs)


def get_video_id(youtube_url):
    """Extract video ID from YouTube URL."""
    parsed_url = urlparse(youtube_url)
    video_id = parse_qs(parsed_url.query).get("v")
    return video_id[0] if video_id else None


def get_transcript(video_id):
    tran = []
    transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
    transcript = transcript_list.find_generated_transcript(['vi','en'])
    translated_transcript = transcript.translate('en')   
    transcript_data = translated_transcript.fetch()
    tran += [t['text'] for t in transcript_data if t['text'] != '[music]']
    return ' '.join(tran)


def chunk_text(text, chunk_size=1000, overlap_size=24):
    encoder = RecursiveCharacterTextSplitter().from_tiktoken_encoder(model_name="gpt-3.5-turbo", chunk_size=chunk_size,
                                                                     chunk_overlap=overlap_size)
    return encoder.split_text(text=text)


def summarize_youtube_video(youtube_url, outputs_dir):
    # Tạo đường dẫn đầy đủ cho thư mục đầu ra
    video_id = get_video_id(youtube_url)
    en_transcript = get_transcript(video_id)
    if not os.path.exists(outputs_dir):
        os.makedirs(outputs_dir)
    if not en_transcript:
        outputs_dir = f"{outputs_dir}\\{video_id}"
        raw_audio_dir = f"{outputs_dir}\\raw_audio\\"
        chunks_dir = f"{outputs_dir}\\chunks"
        segment_length = 10 * 60  # chunk to 10 minute segments
        if not os.path.exists(outputs_dir):
            os.makedirs(outputs_dir)
        audio_filename = youtube_to_mp3(youtube_url, output_dir=raw_audio_dir)
        chunked_audio_files = chunk_audio(
            audio_filename, segment_length=segment_length, output_dir=chunks_dir
        )
        en_transcript = transcribe_audio(chunked_audio_files)
    en_transcript = cleaning_input(en_transcript)
    vi_transcript = translate_text(en_transcript)
    summ_en = summary(en_transcript, 'en')
    summ_vi = summary(vi_transcript, 'vi')
    return tuple(summ_en), tuple(summ_vi)


def main():
    st.set_page_config(layout="wide")

    st.title("YouTube Video Summarizer 🎥")
    st.markdown('<style>h1{color: orange; text-align: center;}</style>', unsafe_allow_html=True)
    st.subheader('Built with the GPT2, Streamlit and ❤️')
    st.markdown('<style>h3{color: pink;  text-align: center;}</style>', unsafe_allow_html=True)

    # Expander for app details
    with st.expander("About the App"):
        st.write("This app allows you to summarize while watching a YouTube video.")
        st.write(
            "Enter a YouTube URL in the input box below and click 'Submit' to start. This app is built by AI Anytime.")

    # Input box for YouTube URL
    youtube_url = st.text_input("Enter YouTube URL")
    # Submit button
    if st.button("Submit") and youtube_url:
        start_time = time.time()  # Start the timer
        summ, tran = summarize_youtube_video(youtube_url, "./outputs")

        sum = summ[0]
        script = summ[1]
        sum_tran = tran[0]
        script_tran = tran[1]

        end_time = time.time()  # End the timer
        elapsed_time = end_time - start_time

        # Centering the video and elapsed time
        st.markdown("""
        <div style="display: flex; justify-content: center; flex-direction: column; align-items: center;">
            <div style="width: 60%; max-width: 720px;">
                <iframe width="100%" height="315" src="{youtube_url}" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
            </div>
            <h2>Summarization of YouTube Video</h2>
            <p>Time taken: {elapsed_time:.2f} seconds</p>
        </div>
    """.format(youtube_url=youtube_url.replace("watch?v=", "embed/"), elapsed_time=elapsed_time),
                    unsafe_allow_html=True)

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("Transcript english")
            st.markdown(
                f'<div style="height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">{script}</div>',
                unsafe_allow_html=True)
            st.subheader("Summary english")
            st.write(sum)

        with col2:
            st.subheader("Transcript vietnamese")
            st.markdown(
                f'<div style="height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">{script_tran}</div>',
                unsafe_allow_html=True)
            st.subheader("Summary vietnamese")
            st.write(sum_tran)


from langchain.text_splitter import RecursiveCharacterTextSplitter


def chunk_overlap_text(text, chunk_size=1000, overlap_size=24):
    return RecursiveCharacterTextSplitter().from_tiktoken_encoder(model_name="gpt-3.5-turbo", chunk_size=chunk_size,
                                                                  chunk_overlap=overlap_size).split_text(text=text)


def summary(text, lang):
    chunks = chunk_overlap_text(text)
    rs = ""
    print(len(chunks[0]))
    print(f"Number of chunks: {len(chunks)}")

    for t in chunks:
        generated_summary = generate_response(t, lang)
        rs += generated_summary + " "
    text = ""
    for t in chunks:
        text += t + " "
    return rs, text


if __name__ == "__main__":
    main()