datasetbuilder / app.py
throaway2854's picture
Update app.py
6c5b73a verified
raw
history blame
13.2 kB
import requests
from bs4 import BeautifulSoup
import os
import json
import gradio as gr
from datasets import Dataset
from PIL import Image
from huggingface_hub import HfApi, HfFolder, Repository, create_repo
import io
import uuid
import time
import random
import zipfile
DATA_DIR = "/data"
IMAGES_DIR = os.path.join(DATA_DIR, "images")
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0"
]
def get_headers(cookies=None):
headers = {
"User-Agent": random.choice(USER_AGENTS),
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://www.google.com/",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1"
}
if cookies:
headers["Cookie"] = cookies
return headers
def make_request(url, cookies=None):
time.sleep(random.uniform(1, 3)) # Add a random delay between requests
return requests.get(url, headers=get_headers(cookies), timeout=10)
def extract_image_url(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
script = soup.find('script', type='text/javascript', string=lambda text: 'image =' in text if text else False)
if script:
try:
js_object_str = script.string.split('=', 1)[1].strip().rstrip(';')
js_object_str = js_object_str.replace("'", '"')
image_data = json.loads(js_object_str)
return f"{image_data['domain']}{image_data['base_dir']}/{image_data['dir']}/{image_data['img']}"
except json.JSONDecodeError as e:
raise Exception(f"Failed to decode JSON: {str(e)}")
img_tag = soup.find('img', alt=True)
if img_tag and 'src' in img_tag.attrs:
return img_tag['src']
return None
def extract_tags(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
tag_elements = soup.find_all('li', class_='tag-type-general')
tags = [tag_element.find_all('a')[1].text for tag_element in tag_elements if len(tag_element.find_all('a')) > 1]
return ','.join(tags)
def download_image(url, cookies=None):
try:
response = make_request(url, cookies)
response.raise_for_status()
return Image.open(io.BytesIO(response.content))
except requests.RequestException as e:
raise Exception(f"Failed to download image: {str(e)}")
class DatasetBuilder:
def __init__(self, dataset_name):
self.dataset_name = dataset_name
self.dataset = self.load_dataset()
os.makedirs(IMAGES_DIR, exist_ok=True)
self.hf_token = os.getenv("HF_Token") # Access the token from the environment variable
def get_dataset_file(self):
return os.path.join(DATA_DIR, f"{self.dataset_name}.json")
def load_dataset(self):
dataset_file = self.get_dataset_file()
if os.path.exists(dataset_file):
with open(dataset_file, 'r') as f:
return json.load(f)
return []
def save_dataset(self):
dataset_file = self.get_dataset_file()
with open(dataset_file, 'w') as f:
json.dump(self.dataset, f)
def resize_images(self, min_size=512, max_size=768):
for item in self.dataset:
image_path = os.path.join(IMAGES_DIR, item['image'])
image = Image.open(image_path)
# Resize the image while maintaining the aspect ratio
image.thumbnail((max_size, max_size), resample=Image.BICUBIC)
# Save the resized image
image.save(image_path)
def resize_dataset(self):
resized_dataset_name = f"{self.dataset_name} (resized)"
resized_dataset_builder = DatasetBuilder(resized_dataset_name)
resized_dataset_builder.dataset = self.dataset
resized_dataset_builder.resize_images()
resized_dataset_builder.save_dataset()
return f"Resized dataset '{self.dataset_name}' to '{resized_dataset_name}'."
def create_downloadable_dataset(self):
if not self.dataset:
return None, "Dataset is empty. Add some images first."
try:
# Create a temporary ZIP file
zip_filename = f"{self.dataset_name}.zip"
zip_path = os.path.join(DATA_DIR, zip_filename)
with zipfile.ZipFile(zip_path, 'w') as zipf:
# Add the dataset JSON file
dataset_file = self.get_dataset_file()
zipf.write(dataset_file, os.path.basename(dataset_file))
# Add all images
for item in self.dataset:
image_path = os.path.join(IMAGES_DIR, item['image'])
zipf.write(image_path, os.path.join("images", item['image']))
return zip_path, f"Dataset '{self.dataset_name}' ready for download."
except Exception as e:
return None, f"Error creating downloadable dataset: {str(e)}"
def add_image(self, url, cookies=None):
try:
response = make_request(url, cookies)
response.raise_for_status()
html_content = response.text
image_url = extract_image_url(html_content)
if not image_url:
raise Exception("Failed to extract image URL")
tags = extract_tags(html_content)
image = download_image(image_url, cookies)
filename = f"{uuid.uuid4()}.jpg"
filepath = os.path.join(IMAGES_DIR, filename)
image.save(filepath)
self.dataset.append({
'image': filename,
'tags': tags
})
self.save_dataset()
return f"Added image with tags: {tags}"
except Exception as e:
return f"Error: {str(e)}"
def build_huggingface_dataset(self):
if not self.dataset:
return "Dataset is empty. Add some images first."
try:
hf_dataset = Dataset.from_dict({
'image': [os.path.join(IMAGES_DIR, item['image']) for item in self.dataset],
'tags': [item['tags'] for item in self.dataset]
})
return "HuggingFace Dataset created successfully!"
except Exception as e:
return f"Error creating HuggingFace Dataset: {str(e)}"
def get_dataset_info(self):
return f"Current dataset size ({self.dataset_name}): {len(self.dataset)} images"
def get_dataset_preview(self, num_images=5):
preview = []
for item in self.dataset[-num_images:]:
image_path = os.path.join(IMAGES_DIR, item['image'])
preview.append((image_path, item['tags']))
return preview
def upload_to_huggingface(self, private=True):
if not self.dataset:
return "Dataset is empty. Add some images first."
if not self.hf_token:
return "Error: Hugging Face Token not found. Please make sure the token is correctly set as an environment variable."
try:
hf_api = HfApi(token=self.hf_token) # Use the token
hf_user = hf_api.whoami()["name"]
repo_id = f"{hf_user}/{self.dataset_name}"
# Create or update the repository
repo_url = create_repo(repo_id, token=self.hf_token, private=private, exist_ok=True)
# Save the dataset locally as a JSON file
dataset_file = self.get_dataset_file()
self.save_dataset()
# Initialize a local repository
repo = Repository(local_dir=DATA_DIR, clone_from=repo_id, use_auth_token=self.hf_token)
# Copy dataset files to the repository directory
repo.git_pull(lfs=True) # Pull the latest changes
os.makedirs(os.path.join(DATA_DIR, "images"), exist_ok=True)
for item in self.dataset:
src_image_path = os.path.join(IMAGES_DIR, item['image'])
dst_image_path = os.path.join(repo.local_dir, "images", item['image'])
if not os.path.exists(dst_image_path):
os.makedirs(os.path.dirname(dst_image_path), exist_ok=True)
os.system(f"cp {src_image_path} {dst_image_path}")
# Add files to the repository and push
repo.git_add(pattern=".")
repo.git_commit("Add dataset and images")
repo.git_push()
return f"Dataset '{self.dataset_name}' successfully uploaded to Hugging Face Hub as a {'private' if private else 'public'} repository."
except Exception as e:
return f"Error uploading dataset to Hugging Face: {str(e)}"
def add_image_to_dataset(url, cookies, dataset_name):
builder = DatasetBuilder(dataset_name)
result = builder.add_image(url, cookies)
return result, builder.get_dataset_info(), builder.get_dataset_preview()
def create_huggingface_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
return builder.build_huggingface_dataset()
def view_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
return builder.get_dataset_preview(num_images=60)
def upload_huggingface_dataset(dataset_name, privacy):
builder = DatasetBuilder(dataset_name)
return builder.upload_to_huggingface(private=privacy)
def download_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
zip_path, message = builder.create_downloadable_dataset()
return zip_path, message
def resize_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
return builder.resize_dataset()
def download_resized_dataset(dataset_name):
builder = DatasetBuilder(f"{dataset_name} (resized)")
zip_path, message = builder.create_downloadable_dataset()
return zip_path, message
# Create Gradio interface
with gr.Blocks(theme="huggingface") as iface:
gr.Markdown("# Image Dataset Builder")
gr.Markdown("Enter a URL to add an image and its tags to the dataset. Progress is saved automatically.")
with gr.Row():
dataset_name_input = gr.Textbox(lines=1, label="Dataset Name", placeholder="Enter dataset name...", value="default_dataset")
url_input = gr.Textbox(lines=2, label="URL", placeholder="Enter image URL here...")
cookies_input = gr.Textbox(lines=2, label="Cookies (optional)", placeholder="Enter cookies")
add_button = gr.Button("Add Image")
result_output = gr.Textbox(label="Result")
dataset_info = gr.Textbox(label="Dataset Info")
gr.Markdown("## Dataset Preview")
preview_gallery = gr.Gallery(label="Recent Additions", show_label=False, elem_id="preview_gallery", columns=5, rows=1, height="auto")
add_button.click(add_image_to_dataset, inputs=[url_input, cookies_input, dataset_name_input], outputs=[result_output, dataset_info, preview_gallery])
create_hf_button = gr.Button("Create HuggingFace Dataset")
hf_result = gr.Textbox(label="Dataset Creation Result")
create_hf_button.click(create_huggingface_dataset, inputs=[dataset_name_input], outputs=hf_result)
view_dataset_button = gr.Button("View Dataset")
dataset_gallery = gr.Gallery(label="Dataset Contents", show_label=False, elem_id="dataset_gallery", columns=5, rows=4, height="auto")
view_dataset_button.click(view_dataset, inputs=[dataset_name_input], outputs=dataset_gallery)
gr.Markdown("## Upload Dataset to Hugging Face")
privacy_radio = gr.Radio(choices=["private", "public"], value="private", label="Repository Privacy")
upload_hf_button = gr.Button("Upload to Hugging Face")
hf_upload_result = gr.Textbox(label="Upload Result")
upload_hf_button.click(upload_huggingface_dataset, inputs=[dataset_name_input, privacy_radio], outputs=hf_upload_result)
gr.Markdown("## Download Dataset")
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download")
download_message = gr.Textbox(label="Download Status")
download_button.click(
download_dataset,
inputs=[dataset_name_input],
outputs=[download_output, download_message]
)
gr.Markdown("## Resize Dataset")
resize_button = gr.Button("Resize Dataset")
resize_result = gr.Textbox(label="Resize Result")
resize_button.click(
resize_dataset,
inputs=[dataset_name_input],
outputs=resize_result
)
gr.Markdown("## Download Resized Dataset")
download_resized_button = gr.Button("Download Resized Dataset")
download_resized_output = gr.File(label="Download Resized")
download_resized_message = gr.Textbox(label="Resized Download Status")
download_resized_button.click(
download_resized_dataset,
inputs=[dataset_name_input],
outputs=[download_resized_output, download_resized_message]
)
# Launch the interface
iface.launch()