Spaces:
Paused
Paused
File size: 13,575 Bytes
addc6c7 4137e07 addc6c7 1f07e5c addc6c7 4137e07 addc6c7 1f07e5c addc6c7 4473560 addc6c7 ade988f addc6c7 4473560 addc6c7 4473560 addc6c7 6c5b73a addc6c7 6c5b73a addc6c7 40e6da8 addc6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import requests
from bs4 import BeautifulSoup
import os
import json
import gradio as gr
from datasets import Dataset
from PIL import Image
from huggingface_hub import HfApi, HfFolder, Repository, create_repo
import io
import uuid
import time
import random
import zipfile
import csv
DATA_DIR = "/data"
IMAGES_DIR = os.path.join(DATA_DIR, "images")
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0"
]
def get_headers(cookies=None):
headers = {
"User-Agent": random.choice(USER_AGENTS),
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://www.google.com/",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1"
}
if cookies:
headers["Cookie"] = cookies
return headers
def make_request(url, cookies=None):
time.sleep(random.uniform(1, 3)) # Add a random delay between requests
return requests.get(url, headers=get_headers(cookies), timeout=10)
def extract_image_url(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
script = soup.find('script', type='text/javascript', string=lambda text: 'image =' in text if text else False)
if script:
try:
js_object_str = script.string.split('=', 1)[1].strip().rstrip(';')
js_object_str = js_object_str.replace("'", '"')
image_data = json.loads(js_object_str)
return f"{image_data['domain']}{image_data['base_dir']}/{image_data['dir']}/{image_data['img']}"
except json.JSONDecodeError as e:
raise Exception(f"Failed to decode JSON: {str(e)}")
img_tag = soup.find('img', alt=True)
if img_tag and 'src' in img_tag.attrs:
return img_tag['src']
return None
def extract_tags(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
tag_elements = soup.find_all('li', class_='tag-type-general')
tags = [tag_element.find_all('a')[1].text for tag_element in tag_elements if len(tag_element.find_all('a')) > 1]
return ','.join(tags)
def download_image(url, cookies=None):
try:
response = make_request(url, cookies)
response.raise_for_status()
return Image.open(io.BytesIO(response.content))
except requests.RequestException as e:
raise Exception(f"Failed to download image: {str(e)}")
class DatasetBuilder:
def __init__(self, dataset_name):
self.dataset_name = dataset_name
self.dataset = self.load_dataset()
os.makedirs(IMAGES_DIR, exist_ok=True)
self.hf_token = os.getenv("HF_Token") # Access the token from the environment variable
def get_dataset_file(self):
return os.path.join(DATA_DIR, f"{self.dataset_name}.json")
def load_dataset(self):
dataset_file = self.get_dataset_file()
if os.path.exists(dataset_file):
with open(dataset_file, 'r') as f:
return json.load(f)
return []
def save_dataset(self):
dataset_file = self.get_dataset_file()
with open(dataset_file, 'w') as f:
json.dump(self.dataset, f)
def resize_images(self, min_size=512, max_size=768):
for item in self.dataset:
image_path = os.path.join(IMAGES_DIR, item['image'])
image = Image.open(image_path)
# Resize the image while maintaining the aspect ratio
image.thumbnail((max_size, max_size), resample=Image.BICUBIC)
# Save the resized image
image.save(image_path)
def resize_dataset(self):
resized_dataset_name = f"{self.dataset_name} (resized)"
resized_dataset_builder = DatasetBuilder(resized_dataset_name)
resized_dataset_builder.dataset = self.dataset
resized_dataset_builder.resize_images()
resized_dataset_builder.save_dataset()
return f"Resized dataset '{self.dataset_name}' to '{resized_dataset_name}'."
def create_downloadable_dataset(self):
if not self.dataset:
return None, "Dataset is empty. Add some images first."
try:
# Create a temporary ZIP file
zip_filename = f"{self.dataset_name}.zip"
zip_path = os.path.join(DATA_DIR, zip_filename)
with zipfile.ZipFile(zip_path, 'w') as zipf:
# Add the dataset CSV file
dataset_file = f"{self.dataset_name}.csv"
dataset_file_path = os.path.join(DATA_DIR, dataset_file)
with open(dataset_file_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['image', 'tags'])
for item in self.dataset:
writer.writerow([item['image'], item['tags']])
zipf.write(dataset_file_path, os.path.basename(dataset_file_path))
# Add all images
for item in self.dataset:
image_path = os.path.join(IMAGES_DIR, item['image'])
zipf.write(image_path, os.path.join("images", item['image']))
return zip_path, f"Dataset '{self.dataset_name}' ready for download."
except Exception as e:
return None, f"Error creating downloadable dataset: {str(e)}"
def add_image(self, url, cookies=None):
try:
response = make_request(url, cookies)
response.raise_for_status()
html_content = response.text
image_url = extract_image_url(html_content)
if not image_url:
raise Exception("Failed to extract image URL")
tags = extract_tags(html_content)
image = download_image(image_url, cookies)
filename = f"{uuid.uuid4()}.jpg"
filepath = os.path.join(IMAGES_DIR, filename)
image.save(filepath)
self.dataset.append({
'image': filename,
'text': tags
})
self.save_dataset()
return f"Added image with tags: {tags}"
except Exception as e:
return f"Error: {str(e)}"
def build_huggingface_dataset(self):
if not self.dataset:
return "Dataset is empty. Add some images first."
try:
hf_dataset = Dataset.from_dict({
'image': [os.path.join(IMAGES_DIR, item['image']) for item in self.dataset],
'text': [item['tags'] for item in self.dataset]
})
return "HuggingFace Dataset created successfully!"
except Exception as e:
return f"Error creating HuggingFace Dataset: {str(e)}"
def get_dataset_info(self):
return f"Current dataset size ({self.dataset_name}): {len(self.dataset)} images"
def get_dataset_preview(self, num_images=5):
preview = []
for item in self.dataset[-num_images:]:
image_path = os.path.join(IMAGES_DIR, item['image'])
preview.append((image_path, item['tags']))
return preview
def upload_to_huggingface(self, private=True):
if not self.dataset:
return "Dataset is empty. Add some images first."
if not self.hf_token:
return "Error: Hugging Face Token not found. Please make sure the token is correctly set as an environment variable."
try:
hf_api = HfApi(token=self.hf_token) # Use the token
hf_user = hf_api.whoami()["name"]
repo_id = f"{hf_user}/{self.dataset_name}"
# Create or update the repository
repo_url = create_repo(repo_id, token=self.hf_token, private=private, exist_ok=True)
# Save the dataset locally as a JSON file
dataset_file = self.get_dataset_file()
self.save_dataset()
# Initialize a local repository
repo = Repository(local_dir=DATA_DIR, clone_from=repo_id, use_auth_token=self.hf_token)
# Copy dataset files to the repository directory
repo.git_pull(lfs=True) # Pull the latest changes
os.makedirs(os.path.join(DATA_DIR, "images"), exist_ok=True)
for item in self.dataset:
src_image_path = os.path.join(IMAGES_DIR, item['image'])
dst_image_path = os.path.join(repo.local_dir, "images", item['image'])
if not os.path.exists(dst_image_path):
os.makedirs(os.path.dirname(dst_image_path), exist_ok=True)
os.system(f"cp {src_image_path} {dst_image_path}")
# Add files to the repository and push
repo.git_add(pattern=".")
repo.git_commit("Add dataset and images")
repo.git_push()
return f"Dataset '{self.dataset_name}' successfully uploaded to Hugging Face Hub as a {'private' if private else 'public'} repository."
except Exception as e:
return f"Error uploading dataset to Hugging Face: {str(e)}"
def add_image_to_dataset(url, cookies, dataset_name):
builder = DatasetBuilder(dataset_name)
result = builder.add_image(url, cookies)
return result, builder.get_dataset_info(), builder.get_dataset_preview()
def create_huggingface_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
return builder.build_huggingface_dataset()
def view_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
return builder.get_dataset_preview(num_images=60)
def upload_huggingface_dataset(dataset_name, privacy):
builder = DatasetBuilder(dataset_name)
return builder.upload_to_huggingface(private=privacy)
def download_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
zip_path, message = builder.create_downloadable_dataset()
return zip_path, message
def resize_dataset(dataset_name):
builder = DatasetBuilder(dataset_name)
return builder.resize_dataset()
def download_resized_dataset(dataset_name):
builder = DatasetBuilder(f"{dataset_name} (resized)")
zip_path, message = builder.create_downloadable_dataset()
return zip_path, message
# Create Gradio interface
with gr.Blocks(theme="huggingface") as iface:
gr.Markdown("# Image Dataset Builder")
gr.Markdown("Enter a URL to add an image and its tags to the dataset. Progress is saved automatically.")
with gr.Row():
dataset_name_input = gr.Textbox(lines=1, label="Dataset Name", placeholder="Enter dataset name...", value="default_dataset")
url_input = gr.Textbox(lines=2, label="URL", placeholder="Enter image URL here...")
cookies_input = gr.Textbox(lines=2, label="Cookies (optional)", placeholder="Enter cookies")
add_button = gr.Button("Add Image")
result_output = gr.Textbox(label="Result")
dataset_info = gr.Textbox(label="Dataset Info")
gr.Markdown("## Dataset Preview")
preview_gallery = gr.Gallery(label="Recent Additions", show_label=False, elem_id="preview_gallery", columns=5, rows=1, height="auto")
add_button.click(add_image_to_dataset, inputs=[url_input, cookies_input, dataset_name_input], outputs=[result_output, dataset_info, preview_gallery])
create_hf_button = gr.Button("Create HuggingFace Dataset")
hf_result = gr.Textbox(label="Dataset Creation Result")
create_hf_button.click(create_huggingface_dataset, inputs=[dataset_name_input], outputs=hf_result)
view_dataset_button = gr.Button("View Dataset")
dataset_gallery = gr.Gallery(label="Dataset Contents", show_label=False, elem_id="dataset_gallery", columns=5, rows=4, height="auto")
view_dataset_button.click(view_dataset, inputs=[dataset_name_input], outputs=dataset_gallery)
gr.Markdown("## Upload Dataset to Hugging Face")
privacy_radio = gr.Radio(choices=["private", "public"], value="private", label="Repository Privacy")
upload_hf_button = gr.Button("Upload to Hugging Face")
hf_upload_result = gr.Textbox(label="Upload Result")
upload_hf_button.click(upload_huggingface_dataset, inputs=[dataset_name_input, privacy_radio], outputs=hf_upload_result)
gr.Markdown("## Download Dataset")
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download")
download_message = gr.Textbox(label="Download Status")
download_button.click(
download_dataset,
inputs=[dataset_name_input],
outputs=[download_output, download_message]
)
gr.Markdown("## Resize Dataset")
resize_button = gr.Button("Resize Dataset")
resize_result = gr.Textbox(label="Resize Result")
resize_button.click(
resize_dataset,
inputs=[dataset_name_input],
outputs=resize_result
)
gr.Markdown("## Download Resized Dataset")
download_resized_button = gr.Button("Download Resized Dataset")
download_resized_output = gr.File(label="Download Resized")
download_resized_message = gr.Textbox(label="Resized Download Status")
download_resized_button.click(
download_resized_dataset,
inputs=[dataset_name_input],
outputs=[download_resized_output, download_resized_message]
)
# Launch the interface
iface.launch() |