gorkemgoknar commited on
Commit
e12147d
·
1 Parent(s): fc82876

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +302 -206
app.py CHANGED
@@ -1,10 +1,15 @@
1
  from __future__ import annotations
2
-
3
  import os
 
 
 
4
 
5
  # By using XTTS you agree to CPML license https://coqui.ai/cpml
6
  os.environ["COQUI_TOS_AGREED"] = "1"
7
 
 
 
 
8
  import textwrap
9
  from scipy.io.wavfile import write
10
  from pydub import AudioSegment
@@ -17,6 +22,8 @@ nltk.download("punkt")
17
  import subprocess
18
  import langid
19
  import uuid
 
 
20
 
21
  import datetime
22
 
@@ -32,14 +39,17 @@ from TTS.tts.configs.xtts_config import XttsConfig
32
  from TTS.tts.models.xtts import Xtts
33
  from TTS.utils.generic_utils import get_user_data_dir
34
 
35
- # This is a modifier for fast GPU (e.g. 4060, as that is pretty speedy for generation)
36
- # For older cards (like 2070 or T4) will reduce value to to smaller for unnecessary waiting
37
- # Could not make play audio next work seemlesly on current Gradio with autoplay so this is a workaround
38
- AUDIO_WAIT_MODIFIER = float(os.environ.get("AUDIO_WAIT_MODIFIER", 0.9))
39
- print("AUDIO_WAIT_MODIFIER set to",AUDIO_WAIT_MODIFIER)
40
- # if set will try to stream audio while receveng audio chunks, beware that recreating audio each time produces artifacts
41
- DIRECT_STREAM = int(os.environ.get("DIRECT_STREAM", 0))
42
- print("DIRECT_STREAM set to",DIRECT_STREAM)
 
 
 
43
 
44
  # This will trigger downloading model
45
  print("Downloading if not downloaded Coqui XTTS V1.1")
@@ -55,12 +65,6 @@ model_path = os.path.join(
55
  config = XttsConfig()
56
  config.load_json(os.path.join(model_path, "config.json"))
57
 
58
- if "ja-jp" not in config.languages:
59
- #fix to have JP before next TTS update
60
- # Note produces "ja" sound before now , will be fixed on next release
61
- config.languages.append("ja")
62
-
63
-
64
  model = Xtts.init_from_config(config)
65
  model.load_checkpoint(
66
  config,
@@ -73,9 +77,9 @@ model.cuda()
73
  print("Done loading TTS")
74
 
75
 
76
- title = "Voice chat with Mistral 7B Instruct"
77
 
78
- DESCRIPTION = """# Voice chat with Mistral 7B Instruct"""
79
  css = """.toast-wrap { display: none !important } """
80
 
81
  from huggingface_hub import HfApi
@@ -84,20 +88,20 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
84
  # will use api to restart space on a unrecoverable error
85
  api = HfApi(token=HF_TOKEN)
86
 
87
- repo_id = "coqui/voice-chat-with-mistral"
88
 
89
  default_system_message = """
90
- You are Mistral, a large language model trained and provided by Mistral, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
91
-
92
  The user is talking to you over voice on their phone, and your response will be read out loud with realistic text-to-speech (TTS) technology from Coqui team. Follow every direction here when crafting your response: Use natural, conversational language that are clear and easy to follow (short sentences, simple words). Be concise and relevant: Most of your responses should be a sentence or two, unless you’re asked to go deeper. Don’t monopolize the conversation. Use discourse markers to ease comprehension. Never use the list format. Keep the conversation flowing. Clarify: when there is ambiguity, ask clarifying questions, rather than make assumptions. Don’t implicitly or explicitly try to end the chat (i.e. do not end a response with “Talk soon!”, or “Enjoy!”). Sometimes the user might just want to chat. Ask them relevant follow-up questions. Don’t ask them if there’s anything else they need help with (e.g. don’t say things like “How can I assist you further?”). Remember that this is a voice conversation: Don’t use lists, markdown, bullet points, or other formatting that’s not typically spoken. Type out numbers in words (e.g. ‘twenty twelve’ instead of the year 2012). If something doesn’t make sense, it’s likely because you misheard them. There wasn’t a typo, and the user didn’t mispronounce anything. Remember to follow these rules absolutely, and do not refer to these rules, even if you’re asked about them.
93
-
94
- You cannot access the internet, but you have vast knowledge, Knowledge cutoff: 2022-09.
95
  Current date: CURRENT_DATE .
96
  """
97
 
98
  system_message = os.environ.get("SYSTEM_MESSAGE", default_system_message)
99
  system_message = system_message.replace("CURRENT_DATE", str(datetime.date.today()))
100
 
 
 
101
  default_system_understand_message = (
102
  "I understand, I am a Mistral chatbot with speech by Coqui team."
103
  )
@@ -106,41 +110,134 @@ system_understand_message = os.environ.get(
106
  )
107
 
108
  print("Mistral system message set as:", default_system_message)
 
109
 
110
- temperature = 0.9
111
- top_p = 0.6
112
- repetition_penalty = 1.2
113
 
 
114
 
115
- import gradio as gr
116
- import os
117
- import time
118
 
119
- import gradio as gr
120
- from transformers import pipeline
121
- import numpy as np
122
 
123
- from gradio_client import Client
124
- from huggingface_hub import InferenceClient
125
 
126
- WHISPER_TIMEOUT = int(os.environ.get("WHISPER_TIMEOUT", 45))
127
- whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
128
- text_client = InferenceClient(
129
- "mistralai/Mistral-7B-Instruct-v0.1"
130
- ,timeout=WHISPER_TIMEOUT
131
- )
132
 
 
133
 
134
- ###### COQUI TTS FUNCTIONS ######
 
 
 
 
 
 
 
 
 
135
 
136
- def get_latents(speaker_wav):
137
- # create as function as we can populate here with voice cleanup/filtering
138
- (
139
- gpt_cond_latent,
140
- diffusion_conditioning,
141
- speaker_embedding,
142
- ) = model.get_conditioning_latents(audio_path=speaker_wav)
143
- return gpt_cond_latent, diffusion_conditioning, speaker_embedding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
  def get_latents(speaker_wav,voice_cleanup=False):
146
  if (voice_cleanup):
@@ -168,10 +265,6 @@ def get_latents(speaker_wav,voice_cleanup=False):
168
  ) = model.get_conditioning_latents(audio_path=speaker_wav)
169
  return gpt_cond_latent, diffusion_conditioning, speaker_embedding
170
 
171
-
172
- latent_map = {}
173
- latent_map["Female_Voice"] = get_latents("examples/female.wav")
174
-
175
  def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
176
  # This will create a wave header then append the frame input
177
  # It should be first on a streaming wav file
@@ -186,11 +279,11 @@ def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=2
186
  wav_buf.seek(0)
187
  return wav_buf.read()
188
 
 
189
  #Config will have more correct languages, they may be added before we append here
190
  ##["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"]
191
 
192
  xtts_supported_languages=config.languages
193
-
194
  def detect_language(prompt):
195
  # Fast language autodetection
196
  if len(prompt)>15:
@@ -267,16 +360,6 @@ def get_voice_streaming(prompt, language, latent_tuple, suffix="0"):
267
  return None
268
 
269
  ###### MISTRAL FUNCTIONS ######
270
-
271
- def format_prompt(message, history):
272
- prompt = (
273
- "<s>[INST]" + system_message + "[/INST]" + system_understand_message + "</s>"
274
- )
275
- for user_prompt, bot_response in history:
276
- prompt += f"[INST] {user_prompt} [/INST]"
277
- prompt += f" {bot_response}</s> "
278
- prompt += f"[INST] {message} [/INST]"
279
- return prompt
280
 
281
  def generate(
282
  prompt,
@@ -299,8 +382,9 @@ def generate(
299
  do_sample=True,
300
  seed=42,
301
  )
302
-
303
- formatted_prompt = format_prompt(prompt, history)
 
304
 
305
  try:
306
  stream = text_client.text_generation(
@@ -386,9 +470,8 @@ def bot(history, system_prompt=""):
386
  history[-1][1] = character
387
  yield history
388
 
389
- ##### MISTRAL STREAMING Sentence splitter ####
390
-
391
- def get_sentence(history, system_prompt=""):
392
  history = [["", None]] if history is None else history
393
 
394
  if system_prompt == "":
@@ -404,12 +487,13 @@ def get_sentence(history, system_prompt=""):
404
  text_to_generate = ""
405
  stored_sentence = None
406
  stored_sentence_hash = None
407
- for character in generate(history[-1][0], history[:-1]):
408
- history[-1][1] = character
409
  # It is coming word by word
410
 
411
- text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").strip())
412
  if len(text_to_generate) > 1:
 
413
  dif = len(text_to_generate) - len(sentence_list)
414
 
415
  if dif == 1 and len(sentence_list) != 0:
@@ -465,148 +549,152 @@ def get_sentence(history, system_prompt=""):
465
 
466
  yield (last_sentence, history)
467
 
468
- #### SPEECH GENERATION BY SENTENCE FROM HISTORY ####
469
-
470
- def generate_speech(history):
471
- language = "autodetect"
472
 
473
- wav_bytestream = b""
474
- for sentence, history in get_sentence(history):
475
- print(sentence)
476
-
477
- # Sometimes prompt </s> coming on output remove it
478
- # Some post process for speech only
479
- sentence = sentence.replace("</s>", "")
480
- # remove code from speech
481
- sentence = re.sub("```.*```", "", sentence, flags=re.DOTALL)
482
- sentence = sentence.replace("```", "")
483
- sentence = sentence.replace("```", "")
484
- sentence = sentence.replace("(", " ")
485
- sentence = sentence.replace(")", " ")
486
-
487
- if len(sentence)==0:
488
- #possible after cleanup sentence is empty
489
- #e.g Kana then romaji in brackets
490
- continue
491
-
492
- # A fast fix for last chacter, may produce weird sounds if it is with text
493
- if (sentence[-1] in ["!", "?", ".", ","]) or (sentence[-2] in ["!", "?", ".", ","]):
494
- # just add a space
495
- sentence = sentence[:-1] + " " + sentence[-1]
496
- print("Sentence for speech:", sentence)
497
 
498
- try:
499
- if len(sentence)<300:
500
- # no problem continue on
501
- sentence_list = [sentence]
502
- else:
503
- # Until now nltk likely split sentences properly but we need additional
504
- # check for longer sentence and split at last possible position
505
- # Do whatever necessary, first break at hypens then spaces and then even split very long words
506
- sentence_list=textwrap.wrap(sentence,300)
507
- print("SPLITTED LONG SENTENCE:",sentence_list)
508
 
509
- for sentence in sentence_list:
 
 
 
 
510
 
511
- if any(c.isalnum() for c in sentence):
512
- if language=="autodetect":
513
- #on first call autodetect, nexts sentence calls will use same language
514
- language = detect_language(sentence)
515
-
516
- #exists at least 1 alphanumeric (utf-8)
517
- audio_stream = get_voice_streaming(
518
- sentence, language, latent_map["Female_Voice"]
519
- )
520
- else:
521
- # likely got a ' or " or some other text without alphanumeric in it
522
- audio_stream = None
523
-
524
- # XTTS is actually using streaming response but we are playing audio by sentence
525
- # If you want direct XTTS voice streaming (send each chunk to voice ) you may set DIRECT_STREAM=1 environment variable
526
- if audio_stream is not None:
527
- wav_chunks = wave_header_chunk()
528
- frame_length = 0
529
- for chunk in audio_stream:
530
- try:
531
- wav_bytestream += chunk
532
- if DIRECT_STREAM:
533
- yield (
534
- gr.Audio.update(
535
- value=wave_header_chunk() + chunk, autoplay=True
536
- ),
537
- history,
538
- )
539
- wait_time = len(chunk) / 2 / 24000
540
- wait_time = AUDIO_WAIT_MODIFIER * wait_time
541
- print("Sleeping till chunk end")
542
- time.sleep(wait_time)
543
 
544
- else:
545
- wav_chunks += chunk
546
- frame_length += len(chunk)
547
- except:
548
- # hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
549
- continue
550
 
551
- if not DIRECT_STREAM:
552
- yield (
553
- gr.Audio.update(value=None, autoplay=True),
554
- history,
555
- ) # hack to switch autoplay
556
- if audio_stream is not None:
557
- yield (gr.Audio.update(value=wav_chunks, autoplay=True), history)
558
- # Streaming wait time calculation
559
- # audio_length = frame_length / sample_width/ frame_rate
560
- wait_time = frame_length / 2 / 24000
561
 
562
- # for non streaming
563
- # wait_time= librosa.get_duration(path=wav)
 
 
 
 
 
 
 
 
 
 
 
 
564
 
565
- wait_time = AUDIO_WAIT_MODIFIER * wait_time
566
- print("Sleeping till audio end")
567
- time.sleep(wait_time)
568
- else:
569
- # Either too much text or some programming, give a silence so stream continues
570
- second_of_silence = AudioSegment.silent() # use default
571
- second_of_silence.export("sil.wav", format="wav")
572
- yield (gr.Audio.update(value="sil.wav", autoplay=True), history)
573
-
574
- except RuntimeError as e:
575
- if "device-side assert" in str(e):
576
- # cannot do anything on cuda device side error, need tor estart
577
- print(
578
- f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
579
- flush=True,
580
- )
581
- gr.Warning("Unhandled Exception encounter, please retry in a minute")
582
- print("Cuda device-assert Runtime encountered need restart")
583
-
584
- # HF Space specific.. This error is unrecoverable need to restart space
585
- api.restart_space(repo_id=repo_id)
 
 
586
  else:
587
- print("RuntimeError: non device-side assert error:", str(e))
588
- raise e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589
 
590
- time.sleep(1)
591
- wav_bytestream = wave_header_chunk() + wav_bytestream
592
- outfile = "combined.wav"
593
- with open(outfile, "wb") as f:
594
- f.write(wav_bytestream)
595
- yield (gr.Audio.update(value=None, autoplay=False), history)
596
- yield (gr.Audio.update(value=outfile, autoplay=False), history)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
 
598
  #### GRADIO INTERFACE ####
599
-
600
  with gr.Blocks(title=title) as demo:
601
  gr.Markdown(DESCRIPTION)
602
-
603
  chatbot = gr.Chatbot(
604
  [],
605
  elem_id="chatbot",
606
  avatar_images=("examples/hf-logo.png", "examples/coqui-logo.png"),
607
  bubble_full_width=False,
608
  )
609
-
 
 
 
 
 
 
 
610
  with gr.Row():
611
  txt = gr.Textbox(
612
  scale=3,
@@ -617,35 +705,43 @@ with gr.Blocks(title=title) as demo:
617
  )
618
  txt_btn = gr.Button(value="Submit text", scale=1)
619
  btn = gr.Audio(source="microphone", type="filepath", scale=4)
620
-
 
 
 
621
  with gr.Row():
 
622
  audio = gr.Audio(
 
623
  label="Generated audio response",
624
- streaming=False,
625
- autoplay=False,
626
- interactive=True,
627
  show_label=True,
628
  )
629
- # TODO add a second audio that plays whole sentences (for mobile especially)
630
- # final_audio = gr.Audio(label="Final audio response", streaming=False, autoplay=False, interactive=False,show_label=True, visible=False)
631
-
 
632
  clear_btn = gr.ClearButton([chatbot, audio])
633
 
634
  txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
635
- generate_speech, chatbot, [audio, chatbot]
636
  )
637
 
638
  txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
639
 
640
  txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
641
- generate_speech, chatbot, [audio, chatbot]
642
  )
643
 
644
  txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
645
 
646
  file_msg = btn.stop_recording(
647
  add_file, [chatbot, btn], [chatbot, txt], queue=False
648
- ).then(generate_speech, chatbot, [audio, chatbot])
 
 
649
 
650
  file_msg.then(lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), None, [txt, btn], queue=False)
651
 
@@ -654,13 +750,13 @@ with gr.Blocks(title=title) as demo:
654
  This Space demonstrates how to speak to a chatbot, based solely on open-source models.
655
  It relies on 3 models:
656
  1. [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
657
- 2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference).
658
  3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.
659
 
660
  Note:
661
  - By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
662
- - Responses generated by chat model should not be assumed correct as this is a demonstration example only
663
  - iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
664
  )
665
  demo.queue()
666
- demo.launch(debug=True)
 
1
  from __future__ import annotations
 
2
  import os
3
+ # we need to compile a CUBLAS version
4
+ # Or get it from https://jllllll.github.io/llama-cpp-python-cuBLAS-wheels/
5
+ os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python')
6
 
7
  # By using XTTS you agree to CPML license https://coqui.ai/cpml
8
  os.environ["COQUI_TOS_AGREED"] = "1"
9
 
10
+ # NOTE: for streaming will require gradio audio streaming fix
11
+ # pip install --upgrade -y gradio==0.50.2 git+https://github.com/gorkemgoknar/gradio.git@patch-1
12
+
13
  import textwrap
14
  from scipy.io.wavfile import write
15
  from pydub import AudioSegment
 
22
  import subprocess
23
  import langid
24
  import uuid
25
+ import emoji
26
+ import pathlib
27
 
28
  import datetime
29
 
 
39
  from TTS.tts.models.xtts import Xtts
40
  from TTS.utils.generic_utils import get_user_data_dir
41
 
42
+
43
+ import gradio as gr
44
+ import os
45
+ import time
46
+
47
+ import gradio as gr
48
+ from transformers import pipeline
49
+ import numpy as np
50
+
51
+ from gradio_client import Client
52
+ from huggingface_hub import InferenceClient
53
 
54
  # This will trigger downloading model
55
  print("Downloading if not downloaded Coqui XTTS V1.1")
 
65
  config = XttsConfig()
66
  config.load_json(os.path.join(model_path, "config.json"))
67
 
 
 
 
 
 
 
68
  model = Xtts.init_from_config(config)
69
  model.load_checkpoint(
70
  config,
 
77
  print("Done loading TTS")
78
 
79
 
80
+ title = "Voice chat with Zephyr 7B-Alpha and Coqui XTTS"
81
 
82
+ DESCRIPTION = """# Voice chat with Zephyr 7B-alpha and Coqui XTTS"""
83
  css = """.toast-wrap { display: none !important } """
84
 
85
  from huggingface_hub import HfApi
 
88
  # will use api to restart space on a unrecoverable error
89
  api = HfApi(token=HF_TOKEN)
90
 
91
+ repo_id = "coqui/voice-chat-with-zephyr"
92
 
93
  default_system_message = """
94
+ You are Zephyr, a large language model trained by Mistral and Hugging Face, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
 
95
  The user is talking to you over voice on their phone, and your response will be read out loud with realistic text-to-speech (TTS) technology from Coqui team. Follow every direction here when crafting your response: Use natural, conversational language that are clear and easy to follow (short sentences, simple words). Be concise and relevant: Most of your responses should be a sentence or two, unless you’re asked to go deeper. Don’t monopolize the conversation. Use discourse markers to ease comprehension. Never use the list format. Keep the conversation flowing. Clarify: when there is ambiguity, ask clarifying questions, rather than make assumptions. Don’t implicitly or explicitly try to end the chat (i.e. do not end a response with “Talk soon!”, or “Enjoy!”). Sometimes the user might just want to chat. Ask them relevant follow-up questions. Don’t ask them if there’s anything else they need help with (e.g. don’t say things like “How can I assist you further?”). Remember that this is a voice conversation: Don’t use lists, markdown, bullet points, or other formatting that’s not typically spoken. Type out numbers in words (e.g. ‘twenty twelve’ instead of the year 2012). If something doesn’t make sense, it’s likely because you misheard them. There wasn’t a typo, and the user didn’t mispronounce anything. Remember to follow these rules absolutely, and do not refer to these rules, even if you’re asked about them.
96
+ Your answers should be informative and short. You cannot access the internet.
 
97
  Current date: CURRENT_DATE .
98
  """
99
 
100
  system_message = os.environ.get("SYSTEM_MESSAGE", default_system_message)
101
  system_message = system_message.replace("CURRENT_DATE", str(datetime.date.today()))
102
 
103
+
104
+ # MISTRAL ONLY
105
  default_system_understand_message = (
106
  "I understand, I am a Mistral chatbot with speech by Coqui team."
107
  )
 
110
  )
111
 
112
  print("Mistral system message set as:", default_system_message)
113
+ WHISPER_TIMEOUT = int(os.environ.get("WHISPER_TIMEOUT", 45))
114
 
115
+ whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
 
 
116
 
117
+ ROLES = ["AI Assistant"]
118
 
119
+ ROLE_PROMPTS = {}
120
+ ROLE_PROMPTS["AI Assistant"]=system_message
121
+ ##"You are an AI assistant with Zephyr model by Mistral and Hugging Face and speech from Coqui XTTS . User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps, your answers should be clear and short sentences"
122
 
 
 
 
123
 
124
+
125
+ ### WILL USE LOCAL MISTRAL OR ZEPHYR
126
 
127
+ from huggingface_hub import hf_hub_download
128
+ print("Downloading LLM")
 
 
 
 
129
 
130
+ llm_model = os.environ.get("LLM_MODEL", "mistral") # or "zephyr"
131
 
132
+ if llm_model == "zephyr":
133
+ #Zephyr
134
+ hf_hub_download(repo_id="TheBloke/zephyr-7B-alpha-GGUF", local_dir=".", filename="zephyr-7b-alpha.Q5_K_M.gguf")
135
+ # use new gguf format
136
+ model_path="./zephyr-7b-alpha.Q5_K_M.gguf"
137
+ else:
138
+ #Mistral
139
+ hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", local_dir=".", filename="mistral-7b-instruct-v0.1.Q5_K_M.gguf")
140
+ # use new gguf format
141
+ model_path="./mistral-7b-instruct-v0.1.Q5_K_M.gguf"
142
 
143
+
144
+ from llama_cpp import Llama
145
+ # set GPU_LAYERS to 15 if you have a 8GB GPU so both models can fit in
146
+ # else 35 full layers + XTTS works fine on T4 16GB
147
+ GPU_LAYERS=int(os.environ.get("GPU_LAYERS", 15))
148
+
149
+ LLAMA_VERBOSE=False
150
+ print("Running LLM")
151
+ llm = Llama(model_path=model_path,n_gpu_layers=GPU_LAYERS,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
152
+
153
+
154
+
155
+ # Mistral formatter
156
+ def format_prompt_mistral(message, history):
157
+ prompt = (
158
+ "<s>[INST]" + system_message + "[/INST]" + system_understand_message + "</s>"
159
+ )
160
+ for user_prompt, bot_response in history:
161
+ prompt += f"[INST] {user_prompt} [/INST]"
162
+ prompt += f" {bot_response}</s> "
163
+ prompt += f"[INST] {message} [/INST]"
164
+ return prompt
165
+
166
+ # Zephyr formatter
167
+ def format_prompt_zephyr(message, history, system_message=system_message):
168
+ prompt = (
169
+ "<|system|>" + system_message + "</s>"
170
+ )
171
+ for user_prompt, bot_response in history:
172
+ prompt += f"<|user|>\n{user_prompt}</s>"
173
+ prompt += f"<|assistant|> {bot_response}</s>"
174
+ if message=="":
175
+ message="Hello"
176
+ prompt += f"<|user|>\n{message}</s>"
177
+ print(prompt)
178
+ return prompt
179
+
180
+ if llm_model=="zephyr":
181
+ format_prompt = format_prompt_zephyr
182
+ else:
183
+ format_prompt = format_prompt_mistral
184
+
185
+
186
+ def generate_local(
187
+ prompt,
188
+ history,
189
+ system_message=None,
190
+ temperature=0.8,
191
+ max_tokens=256,
192
+ top_p=0.95,
193
+ stop = ["</s>","<|user|>"]
194
+ ):
195
+ temperature = float(temperature)
196
+ if temperature < 1e-2:
197
+ temperature = 1e-2
198
+ top_p = float(top_p)
199
+
200
+ generate_kwargs = dict(
201
+ temperature=temperature,
202
+ max_tokens=max_tokens,
203
+ top_p=top_p,
204
+ )
205
+
206
+ formatted_prompt = format_prompt(prompt, history,system_message=system_message)
207
+
208
+ try:
209
+ stream = llm(
210
+ formatted_prompt,
211
+ **generate_kwargs,
212
+ stream=True,
213
+ )
214
+ output = ""
215
+ for response in stream:
216
+ character= response["choices"][0]["text"]
217
+
218
+ if "<|user|>" in character:
219
+ # end of context
220
+ return
221
+
222
+ if emoji.is_emoji(character):
223
+ # Bad emoji not a meaning messes chat from next lines
224
+ return
225
+
226
+
227
+ output += response["choices"][0]["text"].replace("<|assistant|>","").replace("<|user|>","")
228
+ yield output
229
+
230
+ except Exception as e:
231
+ if "Too Many Requests" in str(e):
232
+ print("ERROR: Too many requests on mistral client")
233
+ gr.Warning("Unfortunately Mistral is unable to process")
234
+ output = "Unfortuanately I am not able to process your request now !"
235
+ else:
236
+ print("Unhandled Exception: ", str(e))
237
+ gr.Warning("Unfortunately Mistral is unable to process")
238
+ output = "I do not know what happened but I could not understand you ."
239
+
240
+ return output
241
 
242
  def get_latents(speaker_wav,voice_cleanup=False):
243
  if (voice_cleanup):
 
265
  ) = model.get_conditioning_latents(audio_path=speaker_wav)
266
  return gpt_cond_latent, diffusion_conditioning, speaker_embedding
267
 
 
 
 
 
268
  def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
269
  # This will create a wave header then append the frame input
270
  # It should be first on a streaming wav file
 
279
  wav_buf.seek(0)
280
  return wav_buf.read()
281
 
282
+
283
  #Config will have more correct languages, they may be added before we append here
284
  ##["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"]
285
 
286
  xtts_supported_languages=config.languages
 
287
  def detect_language(prompt):
288
  # Fast language autodetection
289
  if len(prompt)>15:
 
360
  return None
361
 
362
  ###### MISTRAL FUNCTIONS ######
 
 
 
 
 
 
 
 
 
 
363
 
364
  def generate(
365
  prompt,
 
382
  do_sample=True,
383
  seed=42,
384
  )
385
+
386
+ #formatted_prompt = format_prompt(prompt, history)
387
+ formatted_prompt = format_prompt_zephyr(prompt, history)
388
 
389
  try:
390
  stream = text_client.text_generation(
 
470
  history[-1][1] = character
471
  yield history
472
 
473
+
474
+ def get_sentence(history, chatbot_role,system_prompt=""):
 
475
  history = [["", None]] if history is None else history
476
 
477
  if system_prompt == "":
 
487
  text_to_generate = ""
488
  stored_sentence = None
489
  stored_sentence_hash = None
490
+ for character in generate_local(history[-1][0], history[:-1],system_message=ROLE_PROMPTS[chatbot_role]):
491
+ history[-1][1] = character.replace("<|assistant|>","")
492
  # It is coming word by word
493
 
494
+ text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|assistant|>"," ").strip())
495
  if len(text_to_generate) > 1:
496
+
497
  dif = len(text_to_generate) - len(sentence_list)
498
 
499
  if dif == 1 and len(sentence_list) != 0:
 
549
 
550
  yield (last_sentence, history)
551
 
552
+ from scipy.io.wavfile import write
553
+ from pydub import AudioSegment
 
 
554
 
555
+ second_of_silence = AudioSegment.silent() # use default
556
+ second_of_silence.export("sil.wav", format='wav')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
 
558
+
559
+ def generate_speech(history,chatbot_role):
560
+ # Must set autoplay to True first
561
+ yield (history, chatbot_role, "", wave_header_chunk() )
562
+ for sentence, history in get_sentence(history,chatbot_role):
563
+ if sentence != "":
564
+ print("BG: inserting sentence to queue")
 
 
 
565
 
566
+ generated_speech = generate_speech_for_sentence(history, chatbot_role, sentence,return_as_byte=True)
567
+ if generated_speech is not None:
568
+ _, audio_dict = generated_speech
569
+ # We are using byte streaming
570
+ yield (history, chatbot_role, sentence, audio_dict["value"] )
571
 
572
+
573
+ # will generate speech audio file per sentence
574
+ def generate_speech_for_sentence(history, chatbot_role, sentence, return_as_byte=True):
575
+ language = "autodetect"
576
+
577
+ wav_bytestream = b""
578
+
579
+ if len(sentence)==0:
580
+ print("EMPTY SENTENCE")
581
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582
 
583
+ # Sometimes prompt </s> coming on output remove it
584
+ # Some post process for speech only
585
+ sentence = sentence.replace("</s>", "")
586
+ # remove code from speech
587
+ sentence = re.sub("```.*```", "", sentence, flags=re.DOTALL)
588
+ sentence = re.sub("`.*`", "", sentence, flags=re.DOTALL)
589
 
590
+ sentence = re.sub("\(.*\)", "", sentence, flags=re.DOTALL)
 
 
 
 
 
 
 
 
 
591
 
592
+ sentence = sentence.replace("```", "")
593
+ sentence = sentence.replace("...", " ")
594
+ sentence = sentence.replace("(", " ")
595
+ sentence = sentence.replace(")", " ")
596
+ sentence = sentence.replace("<|assistant|>","")
597
+
598
+ # A fast fix for last chacter, may produce weird sounds if it is with text
599
+ if (sentence[-1] in ["!", "?", ".", ","]) or (sentence[-2] in ["!", "?", ".", ","]):
600
+ # just add a space
601
+ sentence = sentence[:-1] + " " + sentence[-1]
602
+ print("Sentence for speech:", sentence)
603
+ if len(sentence)==0:
604
+ print("EMPTY SENTENCE after processing")
605
+ return
606
 
607
+ try:
608
+ SENTENCE_SPLIT_LENGTH=350
609
+ if len(sentence)<SENTENCE_SPLIT_LENGTH:
610
+ # no problem continue on
611
+ sentence_list = [sentence]
612
+ else:
613
+ # Until now nltk likely split sentences properly but we need additional
614
+ # check for longer sentence and split at last possible position
615
+ # Do whatever necessary, first break at hypens then spaces and then even split very long words
616
+ sentence_list=textwrap.wrap(sentence,SENTENCE_SPLIT_LENGTH)
617
+ print("SPLITTED LONG SENTENCE:",sentence_list)
618
+
619
+ for sentence in sentence_list:
620
+
621
+ if any(c.isalnum() for c in sentence):
622
+ if language=="autodetect":
623
+ #on first call autodetect, nexts sentence calls will use same language
624
+ language = detect_language(sentence)
625
+
626
+ #exists at least 1 alphanumeric (utf-8)
627
+ audio_stream = get_voice_streaming(
628
+ sentence, language, latent_map[chatbot_role]
629
+ )
630
  else:
631
+ # likely got a ' or " or some other text without alphanumeric in it
632
+ audio_stream = None
633
+
634
+ # XTTS is actually using streaming response but we are playing audio by sentence
635
+ # If you want direct XTTS voice streaming (send each chunk to voice ) you may set DIRECT_STREAM=1 environment variable
636
+ if audio_stream is not None:
637
+ wav_chunks = wave_header_chunk()
638
+ frame_length = 0
639
+ for chunk in audio_stream:
640
+ try:
641
+ wav_bytestream += chunk
642
+ wav_chunks += chunk
643
+ frame_length += len(chunk)
644
+ except:
645
+ # hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
646
+ continue
647
 
648
+ if audio_stream is not None:
649
+ if not return_as_byte:
650
+ audio_unique_filename = "/tmp/"+ str(uuid.uuid4())+".wav"
651
+ with open(audio_unique_filename, "wb") as f:
652
+ f.write(wav_chunks)
653
+ #Will write filename to context variable
654
+ return (history , gr.Audio.update(value=audio_unique_filename, autoplay=True))
655
+ else:
656
+ return (history , gr.Audio.update(value=wav_bytestream, autoplay=True))
657
+ except RuntimeError as e:
658
+ if "device-side assert" in str(e):
659
+ # cannot do anything on cuda device side error, need tor estart
660
+ print(
661
+ f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
662
+ flush=True,
663
+ )
664
+ gr.Warning("Unhandled Exception encounter, please retry in a minute")
665
+ print("Cuda device-assert Runtime encountered need restart")
666
+
667
+ # HF Space specific.. This error is unrecoverable need to restart space
668
+ api.restart_space(repo_id=repo_id)
669
+ else:
670
+ print("RuntimeError: non device-side assert error:", str(e))
671
+ raise e
672
+
673
+ print("All speech ended")
674
+ return
675
+
676
+
677
+ latent_map = {}
678
+ latent_map["AI Assistant"] = get_latents("examples/female.wav")
679
 
680
  #### GRADIO INTERFACE ####
681
+
682
  with gr.Blocks(title=title) as demo:
683
  gr.Markdown(DESCRIPTION)
 
684
  chatbot = gr.Chatbot(
685
  [],
686
  elem_id="chatbot",
687
  avatar_images=("examples/hf-logo.png", "examples/coqui-logo.png"),
688
  bubble_full_width=False,
689
  )
690
+ with gr.Row():
691
+ chatbot_role = gr.Dropdown(
692
+ label="Role of the Chatbot",
693
+ info="How should Chatbot talk like",
694
+ choices=ROLES,
695
+ max_choices=1,
696
+ value=ROLES[0],
697
+ )
698
  with gr.Row():
699
  txt = gr.Textbox(
700
  scale=3,
 
705
  )
706
  txt_btn = gr.Button(value="Submit text", scale=1)
707
  btn = gr.Audio(source="microphone", type="filepath", scale=4)
708
+ def stop():
709
+ print("Audio STOP")
710
+ set_audio_playing(False)
711
+
712
  with gr.Row():
713
+ sentence = gr.Textbox()
714
  audio = gr.Audio(
715
+ value=None,
716
  label="Generated audio response",
717
+ streaming=True,
718
+ autoplay=True,
719
+ interactive=False,
720
  show_label=True,
721
  )
722
+
723
+ audio.end(stop)
724
+
725
+
726
  clear_btn = gr.ClearButton([chatbot, audio])
727
 
728
  txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
729
+ generate_speech, [chatbot,chatbot_role], [chatbot,chatbot_role, sentence, audio]
730
  )
731
 
732
  txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
733
 
734
  txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
735
+ generate_speech, [chatbot,chatbot_role], [chatbot,chatbot_role, sentence, audio]
736
  )
737
 
738
  txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
739
 
740
  file_msg = btn.stop_recording(
741
  add_file, [chatbot, btn], [chatbot, txt], queue=False
742
+ ).then(
743
+ generate_speech, [chatbot,chatbot_role], [chatbot,chatbot_role, sentence, audio]
744
+ )
745
 
746
  file_msg.then(lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), None, [txt, btn], queue=False)
747
 
 
750
  This Space demonstrates how to speak to a chatbot, based solely on open-source models.
751
  It relies on 3 models:
752
  1. [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
753
+ 2. [Zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF).
754
  3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.
755
 
756
  Note:
757
  - By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
758
+ - Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only
759
  - iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
760
  )
761
  demo.queue()
762
+ demo.launch(debug=True)