import glob import gradio as gr import numpy as np from PIL import Image import psutil from threading import Timer from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor example_images = sorted(glob.glob('examples/map*.jpg')) model_id = f"facebook/maskformer-swin-large-coco" vegetation_labels = ["tree-merged", "grass-merged"] preprocessor = MaskFormerImageProcessor.from_pretrained(model_id) model = MaskFormerForInstanceSegmentation.from_pretrained(model_id) def visualize_instance_seg_mask(img_in, mask, id2label, included_labels): img_out = np.zeros((mask.shape[0], mask.shape[1], 3)) image_total_pixels = mask.shape[0] * mask.shape[1] label_ids = np.unique(mask) def get_color(id): id_color = (np.random.randint(0, 2), np.random.randint(0, 4), np.random.randint(0, 256)) if id2label[id] in included_labels: id_color = (0, 140, 0) return id_color id2color = {id: get_color(id) for id in label_ids} id2count = {id: 0 for id in label_ids} for i in range(img_out.shape[0]): for j in range(img_out.shape[1]): img_out[i, j, :] = id2color[mask[i, j]] id2count[mask[i, j]] = id2count[mask[i, j]] + 1 image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8) vegetation_count = sum([id2count[id] for id in label_ids if id2label[id] in included_labels]) dataframe_vegetation_items = [[ f"{id2label[id]}", f"{(100 * id2count[id] / image_total_pixels):.2f} %", f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" ] for id in label_ids if id2label[id] in included_labels] dataframe_all_items = [[ f"{id2label[id]}", f"{(100 * id2count[id] / image_total_pixels):.2f} %", f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" ] for id in label_ids] dataframe_vegetation_total = [[ f"vegetation", f"{(100 * vegetation_count / image_total_pixels):.2f} %", f"{np.sqrt(vegetation_count / image_total_pixels):.2f} m"]] dataframe = dataframe_vegetation_total if len(dataframe) < 1: dataframe = [[ f"", f"{(0):.2f} %", f"{(0):.2f} m" ]] return image_res, dataframe def query_image(image_path): img = np.array(Image.open(image_path)) img_size = (img.shape[0], img.shape[1]) inputs = preprocessor(images=img, return_tensors="pt") outputs = model(**inputs) results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0] mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label, vegetation_labels) return mask_img, dataframe def get_system_memory(): memory = psutil.virtual_memory() memory_percent = memory.percent memory_used = memory.used / (1024.0 ** 3) memory_total = memory.total / (1024.0 ** 3) print({"used": f"{memory_used:.3f}GB", "total": f"{memory_total:.3f}GB", "percent": f"{memory_percent}%"}) return "" demo = gr.Interface( title="Maskformer (large-coco)", description="Using [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco) model to calculate percentage of pixels in an image that belong to vegetation.", fn=query_image, inputs=[gr.Image(type="filepath", label="Input Image")], outputs=[ gr.Image(label="Vegetation"), gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"]) ], examples=example_images, cache_examples=True, allow_flagging="never", analytics_enabled=None ) class RepeatedTimer(object): def __init__(self, interval, function, *args, **kwargs): self._timer = None self.interval = interval self.function = function self.args = args self.kwargs = kwargs self.is_running = False self.start() def _run(self): self.is_running = False self.start() self.function(*self.args, **self.kwargs) def start(self): if not self.is_running: self._timer = Timer(self.interval, self._run) self._timer.start() self.is_running = True def stop(self): self._timer.cancel() self.is_running = False rt = RepeatedTimer(1, get_system_memory) try: print("launch") demo.queue().launch(show_api=False, debug=True) finally: rt.stop()