import glob import gradio as gr import numpy as np from PIL import Image from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation # feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-coco") # model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-coco") feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-coco") model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-coco") example_images = sorted(glob.glob('examples/map*.jpg')) def visualize_instance_seg_mask(img_in, mask, id2label): img_out = np.zeros((mask.shape[0], mask.shape[1], 3)) image_total_pixels = mask.shape[0] * mask.shape[1] label_ids = np.unique(mask) vegetation_labels = ["tree-merged", "grass-merged"] def get_color(id): id_color = (np.random.randint(0, 2), np.random.randint(0, 4), np.random.randint(0, 256)) if id2label[id] in vegetation_labels: id_color = (0, 140, 0) return id_color id2color = {id: get_color(id) for id in label_ids} id2count = {id: 0 for id in label_ids} for i in range(img_out.shape[0]): for j in range(img_out.shape[1]): img_out[i, j, :] = id2color[mask[i, j]] id2count[mask[i, j]] = id2count[mask[i, j]] + 1 image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8) vegetation_count = sum([id2count[id] for id in label_ids if id2label[id] in vegetation_labels]) dataframe_vegetation_items = [[ f"{id2label[id]}", f"{(100 * id2count[id] / image_total_pixels):.2f} %", f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" ] for id in label_ids if id2label[id] in vegetation_labels] dataframe_all_items = [[ f"{id2label[id]}", f"{(100 * id2count[id] / image_total_pixels):.2f} %", f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" ] for id in label_ids] dataframe_vegetation_total = [[ f"vegetation", f"{(100 * vegetation_count / image_total_pixels):.2f} %", f"{np.sqrt(vegetation_count / image_total_pixels):.2f} m"]] dataframe = dataframe_vegetation_total if len(dataframe) < 1: dataframe = [[ f"", f"{(0):.2f} %", f"{(0):.2f} m" ]] return image_res, dataframe def query_image(image_path): img = np.array(Image.open(image_path)) img_size = (img.shape[0], img.shape[1]) inputs = feature_extractor(images=img, return_tensors="pt") outputs = model(**inputs) results = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0] mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label) return mask_img, dataframe demo = gr.Interface( fn=query_image, inputs=[gr.Image(type="filepath", label="Input Image")], outputs=[ gr.Image(label="Vegetation"), gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"]) ], title="Maskformer (large-coco)", allow_flagging="never", analytics_enabled=None, examples=example_images, # cache_examples=True ) demo.queue(concurrency_count=8, max_size=8) demo.launch(show_api=False)