|
import glob |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation |
|
|
|
|
|
|
|
|
|
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-coco") |
|
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-coco") |
|
|
|
example_images = sorted(glob.glob('examples/map*.jpg')) |
|
|
|
def visualize_instance_seg_mask(img_in, mask, id2label): |
|
img_out = np.zeros((mask.shape[0], mask.shape[1], 3)) |
|
image_total_pixels = mask.shape[0] * mask.shape[1] |
|
label_ids = np.unique(mask) |
|
vegetation_labels = ["tree-merged", "grass-merged"] |
|
|
|
def get_color(id): |
|
id_color = (np.random.randint(0, 2), np.random.randint(0, 4), np.random.randint(0, 256)) |
|
if id2label[id] in vegetation_labels: |
|
id_color = (0, 140, 0) |
|
return id_color |
|
|
|
id2color = {id: get_color(id) for id in label_ids} |
|
id2count = {id: 0 for id in label_ids} |
|
|
|
for i in range(img_out.shape[0]): |
|
for j in range(img_out.shape[1]): |
|
img_out[i, j, :] = id2color[mask[i, j]] |
|
id2count[mask[i, j]] = id2count[mask[i, j]] + 1 |
|
|
|
image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8) |
|
|
|
vegetation_count = sum([id2count[id] for id in label_ids if id2label[id] in vegetation_labels]) |
|
|
|
dataframe_vegetation_items = [[ |
|
f"{id2label[id]}", |
|
f"{(100 * id2count[id] / image_total_pixels):.2f} %", |
|
f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" |
|
] for id in label_ids if id2label[id] in vegetation_labels] |
|
dataframe_all_items = [[ |
|
f"{id2label[id]}", |
|
f"{(100 * id2count[id] / image_total_pixels):.2f} %", |
|
f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m" |
|
] for id in label_ids] |
|
dataframe_vegetation_total = [[ |
|
f"vegetation", |
|
f"{(100 * vegetation_count / image_total_pixels):.2f} %", |
|
f"{np.sqrt(vegetation_count / image_total_pixels):.2f} m"]] |
|
|
|
dataframe = dataframe_vegetation_total |
|
if len(dataframe) < 1: |
|
dataframe = [[ |
|
f"", |
|
f"{(0):.2f} %", |
|
f"{(0):.2f} m" |
|
]] |
|
|
|
return image_res, dataframe |
|
|
|
|
|
def query_image(image_path): |
|
img = np.array(Image.open(image_path)) |
|
img_size = (img.shape[0], img.shape[1]) |
|
inputs = feature_extractor(images=img, return_tensors="pt") |
|
outputs = model(**inputs) |
|
results = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0] |
|
mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label) |
|
return mask_img, dataframe |
|
|
|
|
|
demo = gr.Interface( |
|
query_image, |
|
inputs=[gr.Image(type="filepath", label="Input Image")], |
|
outputs=[ |
|
gr.Image(label="Vegetation"), |
|
gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"]) |
|
], |
|
title="Maskformer (large-coco)", |
|
allow_flagging="never", |
|
analytics_enabled=None, |
|
examples=example_images, |
|
cache_examples=True |
|
) |
|
|
|
demo.launch(show_api=False) |
|
|