Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import pytube as pt | |
from transformers import pipeline | |
from huggingface_hub import model_info | |
transcribe_model_ckpt = "openai/whisper-small" | |
lang = "en" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
transcribe_pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=transcribe_model_ckpt, | |
chunk_length_s=30, | |
device=device, | |
) | |
transcribe_pipe.model.config.forced_decoder_ids = transcribe_pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
text = transcribe_pipe("audio.mp3")["text"] | |
return html_embed_str, text | |
qa_model_ckpt = "deepset/tinyroberta-squad2" | |
qa_pipe = pipeline('question-answering', model=qa_model_ckpt, tokenizer=qa_model_ckpt) | |
def get_answer(query,context): | |
QA_input = { | |
'question': query, | |
'context': context | |
} | |
res = qa_pipe(QA_input)["answer"] | |
return res | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>Youtube-QA</center></h1>") | |
gr.Markdown("<h3>Ask questions from youtube video, it takes sometime to run so grabbing a coffee is a good option ☕️</h3>") | |
gr.Markdown(""" | |
Youtube-audio --> openai-whisper --> Trascription + Query --> QA-model --> Answer | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
in_yt = gr.inputs.Textbox(lines=1, placeholder="Enter Youtube URL", label="YouTube URL") | |
transcribe_btn = gr.Button("Trascribe") | |
with gr.Column(): | |
out_yt_html = gr.outputs.HTML() | |
out_yt_text = gr.Textbox(label="Transciption") | |
with gr.Column(): | |
in_query = gr.Textbox(lines=1, placeholder="What's your Question", label="Query") | |
ans_btn = gr.Button("Answer") | |
out_query = gr.outputs.Textbox(label="Answer") | |
transcribe_btn.click(fn=yt_transcribe, inputs=in_yt, outputs=[out_yt_html,out_yt_text]) | |
ans_btn.click(fn=get_answer, inputs=[in_query,out_yt_text], outputs=out_query) | |
demo.launch() |