import os import torch from datasets import load_dataset from transformers import AutoTokenizer, AutoModel import chromadb import gradio as gr from sklearn.metrics import precision_score, recall_score, f1_score # Mean Pooling - Take attention mask into account for correct averaging def meanpooling(output, mask): embeddings = output[0] # First element of model_output contains all token embeddings mask = mask.unsqueeze(-1).expand(embeddings.size()).float() return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9) # Load the dataset dataset = load_dataset("thankrandomness/mimic-iii-sample") # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("neuml/pubmedbert-base-embeddings-matryoshka") model = AutoModel.from_pretrained("neuml/pubmedbert-base-embeddings-matryoshka") # Function to embed text using mean pooling def embed_text(text): inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt') with torch.no_grad(): output = model(**inputs) embeddings = meanpooling(output, inputs['attention_mask']) return embeddings.numpy().tolist() # Initialize ChromaDB client client = chromadb.Client() collection = client.create_collection(name="pubmedbert_matryoshka_embeddings") # Function to upsert data into ChromaDB def upsert_data(dataset_split): for i, row in enumerate(dataset_split): for note in row['notes']: text = note.get('text', '') annotations_list = [] for annotation in note.get('annotations', []): try: code = annotation['code'] code_system = annotation['code_system'] description = annotation['description'] annotations_list.append({"code": code, "code_system": code_system, "description": description}) except KeyError as e: print(f"Skipping annotation due to missing key: {e}") if text and annotations_list: embeddings = embed_text([text])[0] # Upsert data, embeddings, and annotations into ChromaDB for j, annotation in enumerate(annotations_list): collection.upsert( ids=[f"note_{note['note_id']}_{j}"], embeddings=[embeddings], metadatas=[annotation] ) else: print(f"Skipping note {note['note_id']} due to missing 'text' or 'annotations'") # Upsert training data upsert_data(dataset['train']) # Define retrieval function def retrieve_relevant_text(input_text): input_embedding = embed_text([input_text])[0] # Get the embedding for the single input text results = collection.query( query_embeddings=[input_embedding], n_results=5, include=["metadatas", "documents", "distances"] ) # Extract code and similarity scores output = [] for metadata, distance in zip(results['metadatas'][0], results['distances'][0]): output.append({ "similarity_score": distance, "code": metadata['code'], "code_system": metadata['code_system'], "description": metadata['description'] }) return output # Evaluate retrieval efficiency on the validation/test set def evaluate_efficiency(dataset_split): y_true = [] y_pred = [] for i, row in enumerate(dataset_split): for note in row['notes']: text = note.get('text', '') annotations_list = [annotation['code'] for annotation in note.get('annotations', []) if 'code' in annotation] if text and annotations_list: retrieved_results = retrieve_relevant_text(text) retrieved_codes = [result['code'] for result in retrieved_results] # Ground truth y_true.extend(annotations_list) # Predictions y_pred.extend(retrieved_codes[:len(annotations_list)]) # Assuming we compare the top-k results precision = precision_score(y_true, y_pred, average='macro') recall = recall_score(y_true, y_pred, average='macro') f1 = f1_score(y_true, y_pred, average='macro') return precision, recall, f1 # Calculate retrieval efficiency metrics precision, recall, f1 = evaluate_efficiency(dataset['validation']) # Gradio interface def gradio_interface(input_text): results = retrieve_relevant_text(input_text) formatted_results = [ f"Similarity Score: {result['similarity_score']:.2f}, Code: {result['code']}, Description: {result['description']}" for result in results ] metrics = f"Precision: {precision:.2f}, Recall: {recall:.2f}, F1 Score: {f1:.2f}" return formatted_results, metrics interface = gr.Interface( fn=gradio_interface, inputs="text", outputs=["text", "text"], live=True ) # Display retrieval efficiency metrics print(f"Precision: {precision:.2f}, Recall: {recall:.2f}, F1 Score: {f1:.2f}") interface.launch()