Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -42,15 +42,6 @@ snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
|
42 |
|
43 |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
|
44 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
-
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
46 |
-
"THUDM/CogVideoX-5b",
|
47 |
-
transformer=pipe.transformer,
|
48 |
-
vae=pipe.vae,
|
49 |
-
scheduler=pipe.scheduler,
|
50 |
-
tokenizer=pipe.tokenizer,
|
51 |
-
text_encoder=pipe.text_encoder,
|
52 |
-
torch_dtype=torch.bfloat16,
|
53 |
-
).to("cpu")
|
54 |
|
55 |
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
56 |
"THUDM/CogVideoX-5b-I2V",
|
@@ -229,7 +220,15 @@ def infer(
|
|
229 |
|
230 |
if video_input is not None:
|
231 |
video = load_video(video_input)[:49] # Limit to 49 frames
|
232 |
-
pipe_video.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
video_pt = pipe_video(
|
234 |
video=video,
|
235 |
prompt=prompt,
|
@@ -241,7 +240,6 @@ def infer(
|
|
241 |
guidance_scale=guidance_scale,
|
242 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
243 |
).frames
|
244 |
-
pipe_video.to("cpu")
|
245 |
elif image_input is not None:
|
246 |
pipe_image.to(device)
|
247 |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
|
|
42 |
|
43 |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
|
44 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
47 |
"THUDM/CogVideoX-5b-I2V",
|
|
|
220 |
|
221 |
if video_input is not None:
|
222 |
video = load_video(video_input)[:49] # Limit to 49 frames
|
223 |
+
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
224 |
+
"THUDM/CogVideoX-5b",
|
225 |
+
transformer=pipe.transformer,
|
226 |
+
vae=pipe.vae,
|
227 |
+
scheduler=pipe.scheduler,
|
228 |
+
tokenizer=pipe.tokenizer,
|
229 |
+
text_encoder=pipe.text_encoder,
|
230 |
+
torch_dtype=torch.bfloat16,
|
231 |
+
).to(device)
|
232 |
video_pt = pipe_video(
|
233 |
video=video,
|
234 |
prompt=prompt,
|
|
|
240 |
guidance_scale=guidance_scale,
|
241 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
242 |
).frames
|
|
|
243 |
elif image_input is not None:
|
244 |
pipe_image.to(device)
|
245 |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|