Spaces:
Sleeping
Sleeping
File size: 24,513 Bytes
001ccce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
"""
This script has functions and utilties for model export.
Basically, we have a bunch of versions of the model, and we
want to export them to .bin files to be read from and inferenced in C.
Among the "input" versions of PyTorch files/models:
- Official Llama 2 weights released by Meta
- Huggingface weights available on the hub
- llama2.c (this repo) trained models
Among the "output" versions of .bin files:
- v0: Legacy files of the original llama2.c repo (will eventually be DEPRECATED)
- v1-vN: Improved .bin files with a proper header, cache alignment, etc.
This script aspires to provide all of these conversions.
"""
import os
import gzip
import shutil
import struct
import argparse
import json
from pathlib import Path
import numpy as np
import torch
from torch import nn
from model import ModelArgs, Transformer
# -----------------------------------------------------------------------------
# common utilities
def serialize_fp32(file, tensor):
""" writes one fp32 tensor to file that is open in wb mode """
d = tensor.detach().cpu().view(-1).to(torch.float32).numpy()
b = struct.pack(f'{len(d)}f', *d)
file.write(b)
def serialize_int8(file, tensor):
""" writes one int8 tensor to file that is open in wb mode """
d = tensor.detach().cpu().view(-1).numpy().astype(np.int8)
b = struct.pack(f'{len(d)}b', *d)
file.write(b)
def quantize_q80(w, group_size):
"""
takes a tensor and returns the Q8_0 quantized version
i.e. symmetric quantization into int8, range [-127,127]
"""
assert w.numel() % group_size == 0
ori_shape = w.shape
w = w.float() # convert to float32
w = w.reshape(-1, group_size)
# find the max in each group
wmax = torch.abs(w).max(dim=1).values
# calculate the scaling factor such that float = quant * scale
scale = wmax / 127.0
# scale into range [-127, 127]
quant = w / scale[:,None]
# round to nearest integer
int8val = torch.round(quant).to(torch.int8)
# dequantize by rescaling
fp32val = (int8val.float() * scale[:,None]).view(-1)
fp32valr = fp32val.reshape(-1, group_size)
# calculate the max error in each group
err = torch.abs(fp32valr - w).max(dim=1).values
# find the max error across all groups
maxerr = err.max().item()
return int8val, scale, maxerr
# -----------------------------------------------------------------------------
# legacy
def legacy_export(model, filepath):
""" Original export of llama2.c bin files, i.e. version v0 """
out_file = open(filepath, 'wb')
# first write out the header
hidden_dim = model.layers[0].feed_forward.w1.weight.shape[0]
p = model.params
shared_classifier = torch.equal(model.tok_embeddings.weight, model.output.weight)
# legacy format uses negative/positive vocab size as a shared classifier flag
if not shared_classifier:
p.vocab_size = -p.vocab_size
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads,
n_kv_heads, p.vocab_size, p.max_seq_len)
out_file.write(header)
# next write out the embedding weights
serialize_fp32(out_file, model.tok_embeddings.weight)
# now all the layers
# attention weights
for layer in model.layers:
serialize_fp32(out_file, layer.attention_norm.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.attention.wq.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.attention.wk.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.attention.wv.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.attention.wo.weight)
# ffn weights
for layer in model.layers:
serialize_fp32(out_file, layer.ffn_norm.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.feed_forward.w1.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.feed_forward.w2.weight)
for layer in model.layers:
serialize_fp32(out_file, layer.feed_forward.w3.weight)
# final rmsnorm
serialize_fp32(out_file, model.norm.weight)
# freqs_cis
serialize_fp32(out_file, model.freqs_cos[:p.max_seq_len])
serialize_fp32(out_file, model.freqs_sin[:p.max_seq_len])
# final classifier weights
if not shared_classifier:
serialize_fp32(out_file, model.output.weight)
# write to binary file
out_file.close()
print(f"wrote {filepath}")
# -----------------------------------------------------------------------------
# new version
def version1_export(model, filepath):
"""
Export the model weights in full float32 .bin file to be read from C.
This is same as legacy_export, but with a proper header.
"""
version = 1
out_file = open(filepath, 'wb')
# first write out the header. the header will be 256 bytes
# 1) write magic, which will be uint32 of "ak42" in ASCII
out_file.write(struct.pack('I', 0x616b3432))
# 2) write version, which will be int
out_file.write(struct.pack('i', version))
# 3) write the params, which will be 7 ints
p = model.params
hidden_dim = model.layers[0].feed_forward.w1.weight.shape[0]
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads,
n_kv_heads, p.vocab_size, p.max_seq_len)
out_file.write(header)
# 4) write some other flags
shared_classifier = torch.equal(model.tok_embeddings.weight, model.output.weight)
out_file.write(struct.pack('B', int(shared_classifier)))
pad = 256 - out_file.tell() # pad rest with zeros; tell returns current pos
assert pad >= 0
out_file.write(b'\0' * pad)
# now let's write out all the params
weights = [
*[layer.attention_norm.weight for layer in model.layers],
*[layer.ffn_norm.weight for layer in model.layers],
model.norm.weight,
model.tok_embeddings.weight,
*[layer.attention.wq.weight for layer in model.layers],
*[layer.attention.wk.weight for layer in model.layers],
*[layer.attention.wv.weight for layer in model.layers],
*[layer.attention.wo.weight for layer in model.layers],
*[layer.feed_forward.w1.weight for layer in model.layers],
*[layer.feed_forward.w2.weight for layer in model.layers],
*[layer.feed_forward.w3.weight for layer in model.layers],
]
if not shared_classifier:
weights.append(model.output.weight)
for w in weights:
serialize_fp32(out_file, w)
# write to binary file
out_file.close()
print(f"wrote {filepath}")
def version2_export(model, filepath, group_size=64):
"""
Export the model weights in Q8_0 into .bin file to be read from C.
That is:
- quantize all weights to symmetric int8, in range [-127, 127]
- all other tensors (the rmsnorm params) are kept and exported in fp32
- quantization is done in groups of group_size to reduce the effects of any outliers
"""
version = 2
# let's first do some validation for this export type
while model.params.dim % group_size != 0:
group_size //= 2
print(f"BACKOFF: reducing group size to {group_size} to fit hidden_dim")
weights = [
model.tok_embeddings.weight,
*[layer.attention.wq.weight for layer in model.layers],
*[layer.attention.wk.weight for layer in model.layers],
*[layer.attention.wv.weight for layer in model.layers],
*[layer.attention.wo.weight for layer in model.layers],
*[layer.feed_forward.w1.weight for layer in model.layers],
*[layer.feed_forward.w2.weight for layer in model.layers],
*[layer.feed_forward.w3.weight for layer in model.layers],
]
shared_classifier = torch.equal(model.tok_embeddings.weight, model.output.weight)
if not shared_classifier:
weights.append(model.output.weight)
for w in weights:
assert w.numel() % group_size == 0, f"weight {i} has numel {w.numel()}, not a multiple of group_size {group_size}"
# write
out_file = open(filepath, 'wb')
# first write out the header. the header will be 256 bytes
# 1) write magic, which will be uint32 of "ak42" in ASCII
out_file.write(struct.pack('I', 0x616b3432))
# 2) write version, which will be int
out_file.write(struct.pack('i', version))
# 3) write the params, which will be 7 ints
p = model.params
hidden_dim = model.layers[0].feed_forward.w1.weight.shape[0]
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads,
n_kv_heads, p.vocab_size, p.max_seq_len)
out_file.write(header)
# 4) write some other flags
out_file.write(struct.pack('B', int(shared_classifier)))
out_file.write(struct.pack('i', group_size)) # group size used for quantization
pad = 256 - out_file.tell() # pad rest with zeros; tell returns current pos
assert pad >= 0
out_file.write(b'\0' * pad)
# now that the header is done, let's write out the model
# first let's write out all the params that we are keeping in fp32: the norms
for layer in model.layers: # attention norms
serialize_fp32(out_file, layer.attention_norm.weight)
for layer in model.layers: # MLP norms
serialize_fp32(out_file, layer.ffn_norm.weight)
serialize_fp32(out_file, model.norm.weight) # final pre-classifier norm
# now let's write out all the params that we are quantizing to Q8_0
# note we skip classifier weights, which are shared with the embedding
ew = []
for i, w in enumerate(weights):
# quantize this weight
q, s, err = quantize_q80(w, group_size)
# save the int8 weights to file
serialize_int8(out_file, q) # save the tensor in int8
serialize_fp32(out_file, s) # save scale factors
# logging
ew.append((err, w.shape))
print(f"{i+1}/{len(weights)} quantized {tuple(w.shape)} to Q8_0 with max error {err}")
# print the highest error across all weights, should be very small, e.g. O(~0.001)
ew.sort(reverse=True)
print(f"max quantization group error across all weights: {ew[0][0]}")
# write to binary file
out_file.close()
print(f"wrote {filepath}")
def hf_export(llama_model, filepath, group_size=64, dtype=torch.float32):
""" Generate the pytorch_model.bin state_dict and config.json for HuggingFace """
try:
from transformers.models.llama.configuration_llama import LlamaConfig
except ImportError:
print("Error: transformers package is required to load huggingface models")
print("Please run `pip install transformers` to install it")
return None
# Generate LlamaModel state_dict
hf_state_dict = {}
# Sometimes we have repeated key values for the heads
dim = llama_model.params.dim
num_key_value_heads = llama_model.params.n_kv_heads
n_rep = llama_model.params.n_heads // num_key_value_heads
key_value_dim = dim // n_rep
# HuggingFace needs the weights permuted.
# See: https://github.com/huggingface/transformers/blob/b132c1703eb1c8bd9dfa4ad6a9be2bfd6ef819e9/src/transformers/models/llama/convert_llama_weights_to_hf.py#L122
def permute_original(w, n_heads=llama_model.params.n_heads, dim1=dim, dim2=dim):
return w.view(dim1, dim2).reshape(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
# Transfer weights from llama model to the HF state dictionary format
hf_state_dict['model.embed_tokens.weight'] = llama_model.tok_embeddings.weight.clone().to(dtype)
hf_state_dict['model.norm.weight'] = llama_model.norm.weight.clone().to(dtype)
# Add each layer's weights to the HF state dictionary
for i, layer in enumerate(llama_model.layers):
layer_id = layer.layer_id
hf_state_dict[f'model.layers.{i}.input_layernorm.weight'] = llama_model.layers[layer_id].attention_norm.weight.clone().to(dtype)
hf_state_dict[f'model.layers.{i}.self_attn.q_proj.weight'] = permute_original(llama_model.layers[layer_id].attention.wq.weight.clone()).to(dtype)
hf_state_dict[f'model.layers.{i}.self_attn.k_proj.weight'] = permute_original(llama_model.layers[layer_id].attention.wk.weight.clone(), num_key_value_heads, key_value_dim, dim).to(dtype)
hf_state_dict[f'model.layers.{i}.self_attn.v_proj.weight'] = llama_model.layers[layer_id].attention.wv.weight.clone().to(dtype)
hf_state_dict[f'model.layers.{i}.self_attn.o_proj.weight'] = llama_model.layers[layer_id].attention.wo.weight.clone().to(dtype)
hf_state_dict[f'model.layers.{i}.post_attention_layernorm.weight'] = llama_model.layers[layer_id].ffn_norm.weight.clone().to(dtype)
hf_state_dict[f'model.layers.{i}.mlp.gate_proj.weight'] = llama_model.layers[layer_id].feed_forward.w1.weight.clone().to(dtype)
hf_state_dict[f'model.layers.{i}.mlp.down_proj.weight'] = llama_model.layers[layer_id].feed_forward.w2.weight.clone().to(dtype)
hf_state_dict[f'model.layers.{i}.mlp.up_proj.weight'] = llama_model.layers[layer_id].feed_forward.w3.weight.clone().to(dtype)
# llama2.c usually uses tied weights -> reference the embed_tokens.weights instead
hf_state_dict['lm_head.weight'] = hf_state_dict['model.embed_tokens.weight']
# We check that the embeddings are tied, else use manual output weights
_embeddings_are_tied: bool = torch.equal(llama_model.tok_embeddings.weight, llama_model.output.weight)
if not _embeddings_are_tied:
hf_state_dict['lm_head.weight'] = llama_model.output.weight.clone().to(dtype)
# Generate LlamaConfig (seen in transformers.models.llama.configuration_llama)
# Extract necessary attributes from llama.c model
vocab_size = llama_model.params.vocab_size
hidden_size = llama_model.params.dim
intermediate_size = llama_model.layers[0].feed_forward.w1.weight.shape[0]
num_hidden_layers = llama_model.params.n_layers
num_attention_heads = llama_model.params.n_heads
num_key_value_heads = llama_model.params.n_kv_heads
max_position_embeddings = llama_model.params.max_seq_len
rms_norm_eps = llama_model.params.norm_eps
# TODO check values for:
# pretraining_tp, initializer_range, use_cache,
# rope_theta, and rope_scaling.
config = LlamaConfig(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
max_position_embeddings=max_position_embeddings,
rms_norm_eps=rms_norm_eps,
tie_word_embeddings=_embeddings_are_tied,
# Manual
architectures=["LlamaForCausalLM"],
hidden_act="silu",
)
# Save files in directory filepath
# First make the directory if it doesn't exist
os.makedirs(filepath, exist_ok=True)
# Save the state dictionary in .bin format, and config as .json
torch.save(hf_state_dict, os.path.join(filepath, "pytorch_model.bin"))
config.save_pretrained(filepath)
# -----------------------------------------------------------------------------
# Load / import functions
def load_checkpoint(checkpoint):
# load the provided model checkpoint
checkpoint_dict = torch.load(checkpoint, map_location='cpu')
gptconf = ModelArgs(**checkpoint_dict['model_args'])
model = Transformer(gptconf)
state_dict = checkpoint_dict['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict, strict=False)
model.eval()
return model
def load_meta_model(model_path):
params_path = os.path.join(model_path, 'params.json')
with open(params_path) as f:
params = json.load(f)
print(params)
model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth')))
models = [torch.load(p, map_location='cpu') for p in model_paths]
def concat_weights(models):
state_dict = {}
for name in list(models[0]):
tensors = [model[name] for model in models]
if len(tensors) == 1 or len(tensors[0].shape) == 1:
state_dict[name] = tensors[0]
continue
is_axis_1 = (
name.startswith('tok_embeddings.')
or name.endswith('.attention.wo.weight')
or name.endswith('.feed_forward.w2.weight')
)
axis = 1 if is_axis_1 else 0
state_dict[name] = torch.cat(tensors, dim=axis)
for model in models:
del model[name]
return state_dict
state_dict = concat_weights(models)
del models
# set ModelArgs
config = ModelArgs()
config.dim = params["dim"]
config.n_layers = params["n_layers"]
config.n_heads = params["n_heads"]
config.n_kv_heads = params.get('n_kv_heads') or params['n_heads']
config.multiple_of = params["multiple_of"]
config.norm_eps = params["norm_eps"]
config.vocab_size = state_dict['tok_embeddings.weight'].shape[0]
config.max_seq_len = 2048
# create a new Transformer object and set weights
model = Transformer(config)
model.tok_embeddings.weight = nn.Parameter(state_dict['tok_embeddings.weight'])
model.norm.weight = nn.Parameter(state_dict['norm.weight'])
for layer in model.layers:
i = layer.layer_id
layer.attention_norm.weight = nn.Parameter(state_dict[f'layers.{i}.attention_norm.weight'])
layer.attention.wq.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wq.weight'])
layer.attention.wk.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wk.weight'])
layer.attention.wv.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wv.weight'])
layer.attention.wo.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wo.weight'])
layer.ffn_norm.weight = nn.Parameter(state_dict[f'layers.{i}.ffn_norm.weight'])
layer.feed_forward.w1.weight = nn.Parameter(state_dict[f'layers.{i}.feed_forward.w1.weight'])
layer.feed_forward.w2.weight = nn.Parameter(state_dict[f'layers.{i}.feed_forward.w2.weight'])
layer.feed_forward.w3.weight = nn.Parameter(state_dict[f'layers.{i}.feed_forward.w3.weight'])
# final classifier
model.output.weight = nn.Parameter(state_dict['output.weight'])
model.eval()
return model
def load_hf_model(model_path):
try:
from transformers import AutoModelForCausalLM
except ImportError:
print("Error: transformers package is required to load huggingface models")
print("Please run `pip install transformers` to install it")
return None
# load HF model
hf_model = AutoModelForCausalLM.from_pretrained(model_path)
hf_dict = hf_model.state_dict()
# convert LlamaConfig to ModelArgs
config = ModelArgs()
config.dim = hf_model.config.hidden_size
config.n_layers = hf_model.config.num_hidden_layers
config.n_heads = hf_model.config.num_attention_heads
config.n_kv_heads = hf_model.config.num_attention_heads
config.vocab_size = hf_model.config.vocab_size
config.hidden_dim = hf_model.config.intermediate_size
config.norm_eps = hf_model.config.rms_norm_eps
config.max_seq_len = hf_model.config.max_position_embeddings
# create a new Transformer object and set weights
model = Transformer(config)
model.tok_embeddings.weight = nn.Parameter(hf_dict['model.embed_tokens.weight'])
model.norm.weight = nn.Parameter(hf_dict['model.norm.weight'])
# huggingface permutes WQ and WK, this function reverses it
def permute_reverse(w, n_heads=config.n_heads, dim1=config.dim, dim2=config.dim):
return w.view(n_heads, 2, dim1 // n_heads // 2, dim2).transpose(1, 2).reshape(dim1, dim2)
for layer in model.layers:
i = layer.layer_id
layer.attention_norm.weight = nn.Parameter(hf_dict[f'model.layers.{i}.input_layernorm.weight'])
layer.attention.wq.weight = nn.Parameter(permute_reverse(hf_dict[f'model.layers.{i}.self_attn.q_proj.weight']))
layer.attention.wk.weight = nn.Parameter(permute_reverse(hf_dict[f'model.layers.{i}.self_attn.k_proj.weight']))
layer.attention.wv.weight = nn.Parameter(hf_dict[f'model.layers.{i}.self_attn.v_proj.weight'])
layer.attention.wo.weight = nn.Parameter(hf_dict[f'model.layers.{i}.self_attn.o_proj.weight'])
layer.ffn_norm.weight = nn.Parameter(hf_dict[f'model.layers.{i}.post_attention_layernorm.weight'])
layer.feed_forward.w1.weight = nn.Parameter(hf_dict[f'model.layers.{i}.mlp.gate_proj.weight'])
layer.feed_forward.w2.weight = nn.Parameter(hf_dict[f'model.layers.{i}.mlp.down_proj.weight'])
layer.feed_forward.w3.weight = nn.Parameter(hf_dict[f'model.layers.{i}.mlp.up_proj.weight'])
# final classifier
model.output.weight = nn.Parameter(hf_dict['lm_head.weight'])
model.eval()
return model
# -----------------------------------------------------------------------------
# API entrypoint
def model_export(model, filepath, version, dtype=torch.float32):
"""
Versions docs:
v-1:huggingface export, i.e. intended for use outside of this repo, in HF
v0: legacy llama2.c float format, DEPRECATED
v1: float32 export
v2: int8 quantized Q8_0 export, similar to llama.cpp, in groups
# TODO: add dtype export support for other versions (?)
"""
if version == 0:
legacy_export(model, filepath)
elif version == 1:
version1_export(model, filepath)
elif version == 2:
version2_export(model, filepath)
elif version == -1:
hf_export(model, filepath, dtype)
else:
raise ValueError(f"unknown version {version}")
def torchscript_export(model, filepath, zero_params=False, gzip_output=False):
"""
(This was submitted via a PR earlier. Leaving it here, but "orphaned" for now)
Saves the model as a TorchScript.
The resulting file can be loaded in C++ code and then used for training or
inference with:
#include <torch/script.h>
torch::jit::Module module = torch::jit::load("model.pt")
Note that the serialized model includes the initial parameters and with the default
ModelArgs the file is 59M and gzips down to 55M. If you want to serialize/distribute
the model parameters separately you can zero out the parameters before saving it and
it will gzip down to 780K.
"""
# If requested zero params before saving the model. This is useful in
# conjunction with gzip_output.
if zero_params:
for p in model.parameters():
p.detach().zero_()
torch.jit.save(torch.jit.script(model), filepath)
if gzip_output:
with open(filepath, "rb") as f_in:
with gzip.open(f"{filepath}.gz", "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
os.unlink(filepath)
# -----------------------------------------------------------------------------
# CLI entrypoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("filepath", type=str, help="the output filepath")
parser.add_argument("--version", default=0, type=int, help="the version to export with")
parser.add_argument("--dtype", type=str, help="dtype of the model (fp16, fp32)", default="fp32")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--checkpoint", type=str, help="model checkpoint, .pt file")
group.add_argument("--meta-llama", type=str, help="meta llama model path")
group.add_argument("--hf", type=str, help="huggingface model path")
args = parser.parse_args()
dtype = {"fp16": torch.float16, "fp32": torch.float32}[args.dtype]
if args.checkpoint:
model = load_checkpoint(args.checkpoint)
elif args.meta_llama:
model = load_meta_model(args.meta_llama)
elif args.hf:
model = load_hf_model(args.hf)
if model is None:
parser.error("Can't load input model!")
# export
model_export(model, args.filepath, args.version, args.dtype)
|