import gc import os import numpy as np import spaces import gradio as gr import torch from diffusers.training_utils import set_seed from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter import uuid import random from huggingface_hub import hf_hub_download from depthcrafter.utils import read_video_frames, vis_sequence_depth, save_video examples = [ ["examples/example_01.mp4", 5, 1.0, 1024, -1, -1], ["examples/example_02.mp4", 5, 1.0, 1024, -1, -1], ["examples/example_03.mp4", 5, 1.0, 1024, -1, -1], ["examples/example_04.mp4", 5, 1.0, 1024, -1, -1], ["examples/example_05.mp4", 5, 1.0, 1024, -1, -1], ] unet = DiffusersUNetSpatioTemporalConditionModelDepthCrafter.from_pretrained( "tencent/DepthCrafter", low_cpu_mem_usage=True, torch_dtype=torch.float16, ) pipe = DepthCrafterPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", unet=unet, torch_dtype=torch.float16, variant="fp16", ) pipe.to("cuda") @spaces.GPU(duration=150) def infer_depth( video: str, num_denoising_steps: int, guidance_scale: float, max_res: int = 1024, process_length: int = -1, target_fps: int = -1, # save_folder: str = "./demo_output", window_size: int = 110, overlap: int = 25, seed: int = 42, track_time: bool = True, save_npz: bool = False, ): set_seed(seed) pipe.enable_xformers_memory_efficient_attention() frames, target_fps = read_video_frames(video, process_length, target_fps, max_res) # inference the depth map using the DepthCrafter pipeline with torch.inference_mode(): res = pipe( frames, height=frames.shape[1], width=frames.shape[2], output_type="np", guidance_scale=guidance_scale, num_inference_steps=num_denoising_steps, window_size=window_size, overlap=overlap, track_time=track_time, ).frames[0] # convert the three-channel output to a single channel depth map res = res.sum(-1) / res.shape[-1] # normalize the depth map to [0, 1] across the whole video res = (res - res.min()) / (res.max() - res.min()) # visualize the depth map and save the results vis = vis_sequence_depth(res) # save the depth map and visualization with the target FPS save_path = os.path.join(save_folder, os.path.splitext(os.path.basename(video))[0]) print(f"==> saving results to {save_path}") os.makedirs(os.path.dirname(save_path), exist_ok=True) if save_npz: np.savez_compressed(save_path + ".npz", depth=res) save_video(res, save_path + "_depth.mp4", fps=target_fps) save_video(vis, save_path + "_vis.mp4", fps=target_fps) save_video(frames, save_path + "_input.mp4", fps=target_fps) # clear the cache for the next video gc.collect() torch.cuda.empty_cache() return [ save_path + "_input.mp4", save_path + "_vis.mp4", # save_path + "_depth.mp4", ] def construct_demo(): with gr.Blocks(analytics_enabled=False) as depthcrafter_iface: gr.Markdown( """