import gradio as gr import librosa import numpy as np import torch from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("tejas1206/speecht5_tts_ta") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speaker_embeddings = { "BDL": "speaker/cmu_us_bdl_arctic-wav-arctic_a0009.npy", "CLB": "speaker/cmu_us_clb_arctic-wav-arctic_a0144.npy", "KSP": "speaker/cmu_us_ksp_arctic-wav-arctic_b0087.npy", "RMS": "speaker/cmu_us_rms_arctic-wav-arctic_b0353.npy", "SLT": "speaker/cmu_us_slt_arctic-wav-arctic_a0508.npy", } def convert_text(sentence): replacements = [ (' ', ' '), # Space ('&', 'and'), # Ampersand ('_', '_'), # Underscore ('`', '`'), # Backtick ('·', '.'), # Middle dot ('á', 'a'), # Accent on 'a' ('ô', 'o'), # Accent on 'o' ('š', 's'), # 'S' with caron (soft s sound) ('ஃ', 'akh'), # Aytham (Tamil diacritic) ('அ', 'a'), # Tamil letter A ('ஆ', 'aa'), # Tamil letter AA ('இ', 'i'), # Tamil letter I ('ஈ', 'ii'), # Tamil letter II ('உ', 'u'), # Tamil letter U ('ஊ', 'uu'), # Tamil letter UU ('எ', 'e'), # Tamil letter E ('ஏ', 'ee'), # Tamil letter EE ('ஐ', 'ai'), # Tamil letter AI ('ஒ', 'o'), # Tamil letter O ('ஓ', 'oo'), # Tamil letter OO ('ஔ', 'au'), # Tamil letter AU ('க', 'ka'), # Tamil letter KA ('ங', 'nga'), # Tamil letter NGA ('ச', 'cha'), # Tamil letter CHA ('ஜ', 'ja'), # Tamil letter JA ('ஞ', 'nya'), # Tamil letter NYA ('ட', 'ta'), # Tamil letter TTA (retroflex T) ('ண', 'na'), # Tamil letter NNA (retroflex N) ('த', 'tha'), # Tamil letter THA ('ந', 'na'), # Tamil letter NA ('ன', 'na'), # Tamil letter NN (alveolar N) ('ப', 'pa'), # Tamil letter PA ('ம', 'ma'), # Tamil letter MA ('ய', 'ya'), # Tamil letter YA ('ர', 'ra'), # Tamil letter RA ('ற', 'rra'), # Tamil letter RRA (retroflex R) ('ல', 'la'), # Tamil letter LA ('ள', 'lla'), # Tamil letter LLA (retroflex L) ('ழ', 'zha'), # Tamil letter LLA (unique Tamil letter) ('வ', 'va'), # Tamil letter VA ('ஷ', 'sha'), # Tamil letter SHA ('ஸ', 'sa'), # Tamil letter SA ('ஹ', 'ha'), # Tamil letter HA ('ா', 'aa'), # Long A (Tamil vowel extension) ('ி', 'i'), # Short I (Tamil vowel extension) ('ீ', 'ii'), # Long I (Tamil vowel extension) ('ு', 'u'), # Short U (Tamil vowel extension) ('ூ', 'uu'), # Long U (Tamil vowel extension) ('ெ', 'e'), # Short E (Tamil vowel extension) ('ே', 'ee'), # Long E (Tamil vowel extension) ('ை', 'ai'), # Tamil diphthong AI ('ொ', 'o'), # Short O (Tamil vowel extension) ('ோ', 'oo'), # Long O (Tamil vowel extension) ('ௌ', 'au'), # Tamil diphthong AU ('்', ''), # Tamil virama (removes inherent vowel) ('ௗ', 'au'), # Rare Tamil vowel diacritic ('ഥ', 'tha'), # Malayalam letter THA ('–', '-'), # En dash ('‘', "'"), # Left single quotation mark ('’', "'"), # Right single quotation mark ('‚', ','), # Single low quotation mark ('“', '"'), # Left double quotation mark ('”', '"'), # Right double quotation mark ('•', '.'), # Bullet point ('…', '...'), # Ellipsis ('′', "'"), # Prime (minutes or feet symbol) ('″', '"'), # Double prime (seconds or inches symbol) ('●', '.'), # Filled bullet ('◯', 'o'), # Circle symbol ] for src, dst in replacements: sentence = sentence.replace(src, dst) return sentence def predict(text, speaker): if len(text.strip()) == 0: return (16000, np.zeros(0).astype(np.int16)) text = convert_text(text) inputs = processor(text=text, return_tensors="pt") # limit input length input_ids = inputs["input_ids"] input_ids = input_ids[..., :model.config.max_text_positions] if speaker == "Surprise Me!": # load one of the provided speaker embeddings at random idx = np.random.randint(len(speaker_embeddings)) key = list(speaker_embeddings.keys())[idx] speaker_embedding = np.load(speaker_embeddings[key]) # randomly shuffle the elements np.random.shuffle(speaker_embedding) # randomly flip half the values x = (np.random.rand(512) >= 0.5) * 1.0 x[x == 0] = -1.0 speaker_embedding *= x #speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15 else: speaker_embedding = np.load(speaker_embeddings[speaker[:3]]) speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) speech = (speech.numpy() * 32767).astype(np.int16) return (16000, speech) title = "Text-to-Speech App using SpeechT5" gr.Interface( fn=predict, inputs=[ gr.Text(label="Input Text"), gr.Radio(label="Speaker", choices=[ "BDL (male)", "CLB (female)", "KSP (male)", "RMS (male)", "SLT (female)", "Surprise Me!" ], value="BDL (male)"), ], outputs=[ gr.Audio(label="Generated Speech", type="numpy"), ], title=title, ).launch()