Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
#from huggingface_hub import InferenceClient | |
#import spaces | |
import os | |
os.environ["KERAS_BACKEND"] = "tensorflow" #"jax" "torch" | |
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00" | |
import keras_hub | |
models = [ | |
"hf://tatihden/gemma_mental_health_2b_it_en", | |
"hf://tatihden/gemma_mental_health_2b_en", | |
"hf://tatihden/gemma_mental_health_7b_it_en" | |
] | |
clients = [] | |
for model in models: | |
clients.append(keras_hub.models.GemmaCausalLM.from_preset(model)) | |
#from huggingface_hub import InferenceClient | |
#clients = [] | |
#for model in models: | |
#clients.append(InferenceClient(model)) | |
#@spaces.GPU | |
def format_prompt(message, history): | |
prompt = "" | |
if history: | |
for user_prompt, bot_response in history: | |
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>" | |
#prompt += f"<start_of_turn>model{bot_response}" | |
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" | |
return prompt | |
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p): | |
client = clients[int(client_choice) - 1] | |
if not history: | |
history = [] | |
hist_len = 0 | |
if history: | |
hist_len = len(history) | |
print(hist_len) | |
#generate_kwargs = dict( | |
#temperature=temp, | |
#max_new_tokens=tokens, | |
#top_p=top_p, | |
#repetition_penalty=rep_p, | |
#do_sample=True, | |
#seed=seed, | |
#) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
stream = client.generate(formatted_prompt) | |
output = "" | |
for response in stream: | |
output+= response | |
history.append((prompt, output)) | |
yield history | |
def clear_fn(): | |
return None | |
rand_val = random.randint(1, 1111111111111111) | |
def check_rand(inp, val): | |
if inp is True: | |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111)) | |
else: | |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) | |
with gr.Blocks(theme=gr.themes.Soft(),css=".gradio-container {background-color: rgb(187 247 208)}") as app: | |
gr.HTML( | |
"""<center><h1 style='font-size:xx-large;'>CalmChat:A mental Health Conversational Agent</h1></center>""") | |
with gr.Group(): | |
with gr.Row(): | |
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], | |
interactive=True) | |
chat_b = gr.Chatbot(height=500) | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
rand = gr.Checkbox(label="Random Seed", value=True) | |
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val) | |
tokens = gr.Slider(label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64, | |
interactive=True, visible=True, info="The maximum number of tokens") | |
with gr.Column(scale=1): | |
with gr.Group(): | |
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0) | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
sys_inp = gr.Textbox(label="System Prompt (optional)") | |
inp = gr.Textbox(label="Prompt") | |
with gr.Row(): | |
btn = gr.Button("Chat") | |
stop_btn = gr.Button("Stop") | |
clear_btn = gr.Button("Clear") | |
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf, | |
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, | |
top_p, rep_p], chat_b) | |
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, | |
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p, | |
rep_p], chat_b) | |
stop_btn.click(None, None, None, cancels=[go, chat_sub]) | |
clear_btn.click(clear_fn, None, [chat_b]) | |
app.queue(default_concurrency_limit=10).launch() |