CalmChat / app.py
tatihden's picture
Update app.py
eae7478 verified
import gradio as gr
import random
#from huggingface_hub import InferenceClient
#import spaces
import os
os.environ["KERAS_BACKEND"] = "tensorflow" #"jax" "torch"
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00"
import keras_hub
models = [
"hf://tatihden/gemma_mental_health_2b_it_en",
"hf://tatihden/gemma_mental_health_2b_en",
"hf://tatihden/gemma_mental_health_7b_it_en"
]
clients = []
for model in models:
clients.append(keras_hub.models.GemmaCausalLM.from_preset(model))
#from huggingface_hub import InferenceClient
#clients = []
#for model in models:
#clients.append(InferenceClient(model))
#@spaces.GPU
def format_prompt(message, history):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
#prompt += f"<start_of_turn>model{bot_response}"
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
return prompt
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p):
client = clients[int(client_choice) - 1]
if not history:
history = []
hist_len = 0
if history:
hist_len = len(history)
print(hist_len)
#generate_kwargs = dict(
#temperature=temp,
#max_new_tokens=tokens,
#top_p=top_p,
#repetition_penalty=rep_p,
#do_sample=True,
#seed=seed,
#)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.generate(formatted_prompt)
output = ""
for response in stream:
output+= response
history.append((prompt, output))
yield history
def clear_fn():
return None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp is True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks(theme=gr.themes.Soft(),css=".gradio-container {background-color: rgb(187 247 208)}") as app:
gr.HTML(
"""<center><h1 style='font-size:xx-large;'>CalmChat:A mental Health Conversational Agent</h1></center>""")
with gr.Group():
with gr.Row():
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0],
interactive=True)
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64,
interactive=True, visible=True, info="The maximum number of tokens")
with gr.Column(scale=1):
with gr.Group():
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
sys_inp = gr.Textbox(label="System Prompt (optional)")
inp = gr.Textbox(label="Prompt")
with gr.Row():
btn = gr.Button("Chat")
stop_btn = gr.Button("Stop")
clear_btn = gr.Button("Clear")
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf,
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens,
top_p, rep_p], chat_b)
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf,
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p,
rep_p], chat_b)
stop_btn.click(None, None, None, cancels=[go, chat_sub])
clear_btn.click(clear_fn, None, [chat_b])
app.queue(default_concurrency_limit=10).launch()