Spaces:
Runtime error
Runtime error
File size: 17,143 Bytes
ce6a2ba b65a786 ce6a2ba b65a786 ce6a2ba b65a786 ce6a2ba b65a786 ce6a2ba b65a786 ce6a2ba b65a786 ce6a2ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from transformers import AutoModel, AutoTokenizer
from transformers import AutoModelForCausalLM
from scipy.spatial.distance import cosine
import argparse
import json
import pdb
import torch
import torch.nn.functional as F
def read_text(input_file):
arr = open(input_file).read().split("\n")
return arr[:-1]
class CausalLMModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In CausalLMModel Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
if (self.debug):
print("Init model",model_name)
# For best performance: EleutherAI/gpt-j-6B
if (model_name is None):
model_name = "EleutherAI/gpt-neo-125M"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.model.eval()
self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
def compute_embeddings(self,input_file_name,input_data,is_file):
if (self.debug):
print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
query = texts[0]
docs = texts[1:]
# Tokenize input texts
#print(f"Query: {query}")
scores = []
for doc in docs:
context = self.prompt.format(doc)
context_enc = tokenizer.encode(context, add_special_tokens=False)
continuation_enc = tokenizer.encode(query, add_special_tokens=False)
# Slice off the last token, as we take its probability from the one before
model_input = torch.tensor(context_enc+continuation_enc[:-1])
continuation_len = len(continuation_enc)
input_len, = model_input.shape
# [seq_len] -> [seq_len, vocab]
logprobs = torch.nn.functional.log_softmax(model(model_input)[0], dim=-1).cpu()
# [seq_len, vocab] -> [continuation_len, vocab]
logprobs = logprobs[input_len-continuation_len:]
# Gather the log probabilities of the continuation tokens -> [continuation_len]
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
score = torch.sum(logprobs)
scores.append(score.tolist())
return texts,scores
def output_results(self,output_file,texts,scores,main_index = 0):
cosine_dict = {}
docs = texts[1:]
if (self.debug):
print("Total sentences",len(texts))
assert(len(scores) == len(docs))
for i in range(len(docs)):
cosine_dict[docs[i]] = scores[i]
if (self.debug):
print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Document score for \"%s\" is: %.3f" % (key[:100], sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class SGPTQnAModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In SGPT Q&A Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
if (self.debug):
print("Init model",model_name)
if (model_name is None):
model_name = "Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.model.eval()
self.SPECB_QUE_BOS = self.tokenizer.encode("[", add_special_tokens=False)[0]
self.SPECB_QUE_EOS = self.tokenizer.encode("]", add_special_tokens=False)[0]
self.SPECB_DOC_BOS = self.tokenizer.encode("{", add_special_tokens=False)[0]
self.SPECB_DOC_EOS = self.tokenizer.encode("}", add_special_tokens=False)[0]
def tokenize_with_specb(self,texts, is_query):
# Tokenize without padding
batch_tokens = self.tokenizer(texts, padding=False, truncation=True)
# Add special brackets & pay attention to them
for seq, att in zip(batch_tokens["input_ids"], batch_tokens["attention_mask"]):
if is_query:
seq.insert(0, self.SPECB_QUE_BOS)
seq.append(self.SPECB_QUE_EOS)
else:
seq.insert(0, self.SPECB_DOC_BOS)
seq.append(self.SPECB_DOC_EOS)
att.insert(0, 1)
att.append(1)
# Add padding
batch_tokens = self.tokenizer.pad(batch_tokens, padding=True, return_tensors="pt")
return batch_tokens
def get_weightedmean_embedding(self,batch_tokens, model):
# Get the embeddings
with torch.no_grad():
# Get hidden state of shape [bs, seq_len, hid_dim]
last_hidden_state = self.model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
# Get weights of shape [bs, seq_len, hid_dim]
weights = (
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
.unsqueeze(0)
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float().to(last_hidden_state.device)
)
# Get attn mask of shape [bs, seq_len, hid_dim]
input_mask_expanded = (
batch_tokens["attention_mask"]
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float()
)
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
embeddings = sum_embeddings / sum_mask
return embeddings
def compute_embeddings(self,input_file_name,input_data,is_file):
if (self.debug):
print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
queries = [texts[0]]
docs = texts[1:]
query_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(queries, is_query=True), self.model)
doc_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(docs, is_query=False), self.model)
return texts,(query_embeddings,doc_embeddings)
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
query_embeddings = embeddings[0]
doc_embeddings = embeddings[1]
cosine_dict = {}
queries = [texts[0]]
docs = texts[1:]
if (self.debug):
print("Total sentences",len(texts))
for i in range(len(docs)):
cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i])
if (self.debug):
print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class SimCSEModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In SimCSE constructor")
def init_model(self,model_name = None):
if (model_name == None):
model_name = "princeton-nlp/sup-simcse-roberta-large"
#self.model = SimCSE(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def compute_embeddings(self,input_file_name,input_file,input_data,is_file):
texts = read_text(input_data) if is_file == True else input_data
inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
return texts,embeddings
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_dict = {}
#print("Total sentences",len(texts))
for i in range(len(texts)):
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
#print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class SGPTModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In SGPT Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
if (self.debug):
print("Init model",model_name)
if (model_name is None):
model_name = "Muennighoff/SGPT-125M-weightedmean-nli-bitfit"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
#self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
#self.model = AutoModel.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
# Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
self.model.eval()
def compute_embeddings(self,input_file_name,input_data,is_file):
if (self.debug):
print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
# Tokenize input texts
batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
# Get the embeddings
with torch.no_grad():
# Get hidden state of shape [bs, seq_len, hid_dim]
last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
# Get weights of shape [bs, seq_len, hid_dim]
weights = (
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
.unsqueeze(0)
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float().to(last_hidden_state.device)
)
# Get attn mask of shape [bs, seq_len, hid_dim]
input_mask_expanded = (
batch_tokens["attention_mask"]
.unsqueeze(-1)
.expand(last_hidden_state.size())
.float()
)
# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
embeddings = sum_embeddings / sum_mask
return texts,embeddings
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_dict = {}
if (self.debug):
print("Total sentences",len(texts))
for i in range(len(texts)):
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
if (self.debug):
print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
class HFModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.debug = False
print("In HF Constructor")
def init_model(self,model_name = None):
# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
#print("Init model",model_name)
if (model_name is None):
model_name = "sentence-transformers/all-MiniLM-L6-v2"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.model.eval()
def mean_pooling(self,model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def compute_embeddings(self,input_file_name,input_data,is_file):
#print("Computing embeddings for:", input_data[:20])
model = self.model
tokenizer = self.tokenizer
texts = read_text(input_data) if is_file == True else input_data
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
return texts,sentence_embeddings
def output_results(self,output_file,texts,embeddings,main_index = 0):
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_dict = {}
#print("Total sentences",len(texts))
for i in range(len(texts)):
cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
#print("Input sentence:",texts[main_index])
sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
if (self.debug):
for key in sorted_dict:
print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
if (output_file is not None):
with open(output_file,"w") as fp:
fp.write(json.dumps(sorted_dict,indent=0))
return sorted_dict
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SGPT model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences")
parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results")
parser.add_argument('-model', action="store", dest="model",default="sentence-transformers/all-MiniLM-L6-v2",help="model name")
results = parser.parse_args()
obj = HFModel()
obj.init_model(results.model)
texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True)
results = obj.output_results(results.output,texts,embeddings)
|