File size: 17,143 Bytes
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65a786
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65a786
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65a786
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65a786
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65a786
ce6a2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65a786
ce6a2ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from transformers import AutoModel, AutoTokenizer
from transformers import AutoModelForCausalLM
from scipy.spatial.distance import cosine
import argparse
import json
import pdb
import torch
import torch.nn.functional as F

def read_text(input_file):
    arr = open(input_file).read().split("\n")
    return arr[:-1]


class CausalLMModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.debug = False
        print("In CausalLMModel Constructor")

    def init_model(self,model_name = None):
        # Get our models - The package will take care of downloading the models automatically
        # For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
        if (self.debug):
            print("Init model",model_name)
        # For best performance: EleutherAI/gpt-j-6B
        if (model_name is None):
            model_name = "EleutherAI/gpt-neo-125M"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        self.model.eval()
        self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'

    def compute_embeddings(self,input_file_name,input_data,is_file):
        if (self.debug):
            print("Computing embeddings for:", input_data[:20])
        model = self.model
        tokenizer = self.tokenizer

        texts = read_text(input_data) if is_file == True else input_data
        query = texts[0]
        docs = texts[1:]

        # Tokenize input texts

        #print(f"Query: {query}")
        scores = []
        for doc in docs:
            context = self.prompt.format(doc)

            context_enc = tokenizer.encode(context, add_special_tokens=False)
            continuation_enc = tokenizer.encode(query, add_special_tokens=False)
            # Slice off the last token, as we take its probability from the one before
            model_input = torch.tensor(context_enc+continuation_enc[:-1])
            continuation_len = len(continuation_enc)
            input_len, = model_input.shape

            # [seq_len] -> [seq_len, vocab]
            logprobs = torch.nn.functional.log_softmax(model(model_input)[0], dim=-1).cpu()
            # [seq_len, vocab] -> [continuation_len, vocab]
            logprobs = logprobs[input_len-continuation_len:]
            # Gather the log probabilities of the continuation tokens -> [continuation_len]
            logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
            score = torch.sum(logprobs)
            scores.append(score.tolist())
        return texts,scores

    def output_results(self,output_file,texts,scores,main_index = 0):
        cosine_dict = {}
        docs = texts[1:]
        if (self.debug):
            print("Total sentences",len(texts))
        assert(len(scores) == len(docs))
        for i in range(len(docs)):
            cosine_dict[docs[i]] = scores[i]

        if (self.debug):
            print("Input sentence:",texts[main_index])
        sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
        if (self.debug):
            for key in sorted_dict:
                print("Document score for \"%s\" is: %.3f" % (key[:100], sorted_dict[key]))
        if (output_file is not None):
            with open(output_file,"w") as fp:
                fp.write(json.dumps(sorted_dict,indent=0))
        return sorted_dict


class SGPTQnAModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.debug = False
        print("In SGPT Q&A Constructor")


    def init_model(self,model_name = None):
        # Get our models - The package will take care of downloading the models automatically
        # For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
        if (self.debug):
            print("Init model",model_name)
        if (model_name is None):
            model_name = "Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)
        self.model.eval()
        self.SPECB_QUE_BOS = self.tokenizer.encode("[", add_special_tokens=False)[0]
        self.SPECB_QUE_EOS = self.tokenizer.encode("]", add_special_tokens=False)[0]

        self.SPECB_DOC_BOS = self.tokenizer.encode("{", add_special_tokens=False)[0]
        self.SPECB_DOC_EOS = self.tokenizer.encode("}", add_special_tokens=False)[0]


    def tokenize_with_specb(self,texts, is_query):
        # Tokenize without padding
        batch_tokens = self.tokenizer(texts, padding=False, truncation=True)   
        # Add special brackets & pay attention to them
        for seq, att in zip(batch_tokens["input_ids"], batch_tokens["attention_mask"]):
            if is_query:
                seq.insert(0, self.SPECB_QUE_BOS)
                seq.append(self.SPECB_QUE_EOS)
            else:
                seq.insert(0, self.SPECB_DOC_BOS)
                seq.append(self.SPECB_DOC_EOS)
            att.insert(0, 1)
            att.append(1)
        # Add padding
        batch_tokens = self.tokenizer.pad(batch_tokens, padding=True, return_tensors="pt")
        return batch_tokens

    def get_weightedmean_embedding(self,batch_tokens, model):
        # Get the embeddings
        with torch.no_grad():
            # Get hidden state of shape [bs, seq_len, hid_dim]
            last_hidden_state = self.model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state

        # Get weights of shape [bs, seq_len, hid_dim]
        weights = (
            torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
            .unsqueeze(0)
            .unsqueeze(-1)
            .expand(last_hidden_state.size())
            .float().to(last_hidden_state.device)
        )

        # Get attn mask of shape [bs, seq_len, hid_dim]
        input_mask_expanded = (
            batch_tokens["attention_mask"]
            .unsqueeze(-1)
            .expand(last_hidden_state.size())
            .float()
        )

        # Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
        sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
        sum_mask = torch.sum(input_mask_expanded * weights, dim=1)

        embeddings = sum_embeddings / sum_mask

        return embeddings

    def compute_embeddings(self,input_file_name,input_data,is_file):
        if (self.debug):
            print("Computing embeddings for:", input_data[:20])
        model = self.model
        tokenizer = self.tokenizer

        texts = read_text(input_data) if is_file == True else input_data

        queries = [texts[0]]
        docs = texts[1:]
        query_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(queries, is_query=True), self.model)
        doc_embeddings = self.get_weightedmean_embedding(self.tokenize_with_specb(docs, is_query=False), self.model)
        return texts,(query_embeddings,doc_embeddings)



    def output_results(self,output_file,texts,embeddings,main_index = 0):
        # Calculate cosine similarities
        # Cosine similarities are in [-1, 1]. Higher means more similar
        query_embeddings = embeddings[0]
        doc_embeddings = embeddings[1]
        cosine_dict = {}
        queries = [texts[0]]
        docs = texts[1:]
        if (self.debug):
            print("Total sentences",len(texts))
        for i in range(len(docs)):
            cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i])

        if (self.debug):
            print("Input sentence:",texts[main_index])
        sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
        if (self.debug):
            for key in sorted_dict:
                print("Cosine similarity with  \"%s\" is: %.3f" % (key, sorted_dict[key]))
        if (output_file is not None):
            with open(output_file,"w") as fp:
                fp.write(json.dumps(sorted_dict,indent=0))
        return sorted_dict


class SimCSEModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.debug = False
        print("In SimCSE constructor")

    def init_model(self,model_name = None):
        if (model_name == None):
            model_name = "princeton-nlp/sup-simcse-roberta-large"
        #self.model = SimCSE(model_name)
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def compute_embeddings(self,input_file_name,input_file,input_data,is_file):
        texts = read_text(input_data) if is_file == True else input_data
        inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
        with torch.no_grad():
            embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
        return texts,embeddings

    def output_results(self,output_file,texts,embeddings,main_index = 0):
        # Calculate cosine similarities
        # Cosine similarities are in [-1, 1]. Higher means more similar
        cosine_dict = {}
        #print("Total sentences",len(texts))
        for i in range(len(texts)):
                cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])

        #print("Input sentence:",texts[main_index])
        sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
        if (self.debug):
            for key in sorted_dict:
                print("Cosine similarity with  \"%s\" is: %.3f" % (key, sorted_dict[key]))
        if (output_file is not None):
            with open(output_file,"w") as fp:
                fp.write(json.dumps(sorted_dict,indent=0))
        return sorted_dict



class SGPTModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.debug = False
        print("In SGPT Constructor")


    def init_model(self,model_name = None):
        # Get our models - The package will take care of downloading the models automatically
        # For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
        if (self.debug):
            print("Init model",model_name)
        if (model_name is None):
            model_name = "Muennighoff/SGPT-125M-weightedmean-nli-bitfit"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)
        #self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
        #self.model = AutoModel.from_pretrained("Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit")
        #self.tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
        #self.model = AutoModel.from_pretrained("Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit")
        # Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
        self.model.eval()

    def compute_embeddings(self,input_file_name,input_data,is_file):
        if (self.debug):
            print("Computing embeddings for:", input_data[:20])
        model = self.model
        tokenizer = self.tokenizer

        texts = read_text(input_data) if is_file == True else input_data

        # Tokenize input texts
        batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")

    # Get the embeddings
        with torch.no_grad():
            # Get hidden state of shape [bs, seq_len, hid_dim]
            last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state

        # Get weights of shape [bs, seq_len, hid_dim]
        weights = (
            torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
            .unsqueeze(0)
            .unsqueeze(-1)
            .expand(last_hidden_state.size())
            .float().to(last_hidden_state.device)
        )

        # Get attn mask of shape [bs, seq_len, hid_dim]
        input_mask_expanded = (
            batch_tokens["attention_mask"]
            .unsqueeze(-1)
            .expand(last_hidden_state.size())
            .float()
        )

        # Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
        sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
        sum_mask = torch.sum(input_mask_expanded * weights, dim=1)

        embeddings = sum_embeddings / sum_mask
        return texts,embeddings

    def output_results(self,output_file,texts,embeddings,main_index = 0):
        # Calculate cosine similarities
        # Cosine similarities are in [-1, 1]. Higher means more similar
        cosine_dict = {}
        if (self.debug):
            print("Total sentences",len(texts))
        for i in range(len(texts)):
                cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])

        if (self.debug):
            print("Input sentence:",texts[main_index])
        sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
        if (self.debug):
            for key in sorted_dict:
                print("Cosine similarity with  \"%s\" is: %.3f" % (key, sorted_dict[key]))
        if (output_file is not None):
            with open(output_file,"w") as fp:
                fp.write(json.dumps(sorted_dict,indent=0))
        return sorted_dict





class HFModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.debug = False
        print("In HF Constructor")


    def init_model(self,model_name = None):
        # Get our models - The package will take care of downloading the models automatically
        # For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
        #print("Init model",model_name)
        if (model_name is None):
            model_name = "sentence-transformers/all-MiniLM-L6-v2"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)
        self.model.eval()

    def mean_pooling(self,model_output, attention_mask):
        token_embeddings = model_output[0] #First element of model_output contains all token embeddings
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    def compute_embeddings(self,input_file_name,input_data,is_file):
        #print("Computing embeddings for:", input_data[:20])
        model = self.model
        tokenizer = self.tokenizer

        texts = read_text(input_data) if is_file == True else input_data

        encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')

        # Compute token embeddings
        with torch.no_grad():
            model_output = model(**encoded_input)

        # Perform pooling
        sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])

        # Normalize embeddings
        sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)

        return texts,sentence_embeddings

    def output_results(self,output_file,texts,embeddings,main_index = 0):
        # Calculate cosine similarities
        # Cosine similarities are in [-1, 1]. Higher means more similar
        cosine_dict = {}
        #print("Total sentences",len(texts))
        for i in range(len(texts)):
                cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])

        #print("Input sentence:",texts[main_index])
        sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
        if (self.debug):
            for key in sorted_dict:
                print("Cosine similarity with  \"%s\" is: %.3f" % (key, sorted_dict[key]))
        if (output_file is not None):
            with open(output_file,"w") as fp:
                fp.write(json.dumps(sorted_dict,indent=0))
        return sorted_dict



if __name__ == '__main__':
        parser = argparse.ArgumentParser(description='SGPT model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
        parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences")
        parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results")
        parser.add_argument('-model', action="store", dest="model",default="sentence-transformers/all-MiniLM-L6-v2",help="model name")

        results = parser.parse_args()
        obj = HFModel()
        obj.init_model(results.model)
        texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True)
        results = obj.output_results(results.output,texts,embeddings)