taskswithcode commited on
Commit
d872b74
·
1 Parent(s): 515e4d1
app.py CHANGED
@@ -6,6 +6,7 @@ from io import StringIO
6
  import pdb
7
  import json
8
  from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
 
9
  from twc_clustering import TWCClustering
10
  import torch
11
  import requests
@@ -60,7 +61,7 @@ def get_views(action):
60
 
61
  def construct_model_info_for_display(model_names):
62
  options_arr = []
63
- markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>These are either state-of-the-art or the most downloaded models on Hugging Face</i></div>"
64
  markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
65
  for node in model_names:
66
  options_arr .append(node["name"])
@@ -96,22 +97,22 @@ def load_model(model_name,model_class,load_model_name):
96
  ret_model.init_model(load_model_name)
97
  assert(ret_model is not None)
98
  except Exception as e:
99
- st.error("Unable to load model:" + model_name + " " + load_model_name + " " + str(e))
100
  pass
101
  return ret_model
102
 
103
 
104
 
105
  @st.experimental_memo
106
- def cached_compute_similarity(sentences,_model,model_name,threshold,_cluster,clustering_type):
107
- texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
108
  results = _cluster.cluster(None,texts,embeddings,threshold,clustering_type)
109
  return results
110
 
111
 
112
- def uncached_compute_similarity(sentences,_model,model_name,threshold,cluster,clustering_type):
113
  with st.spinner('Computing vectors for sentences'):
114
- texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
115
  results = cluster.cluster(None,texts,embeddings,threshold,clustering_type)
116
  #st.success("Similarity computation complete")
117
  return results
@@ -124,7 +125,7 @@ def get_model_info(model_names,model_name):
124
  return get_model_info(model_names,DEFAULT_HF_MODEL)
125
 
126
 
127
- def run_test(model_names,model_name,sentences,display_area,threshold,user_uploaded,custom_model,clustering_type):
128
  display_area.text("Loading model:" + model_name)
129
  #Note. model_name may get mapped to new name in the call below for custom models
130
  orig_model_name = model_name
@@ -136,14 +137,18 @@ def run_test(model_names,model_name,sentences,display_area,threshold,user_upload
136
  if ("Note" in model_info):
137
  fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
138
  display_area.write(fail_link)
 
 
 
 
139
  model = load_model(model_name,model_info["class"],load_model_name)
140
  display_area.text("Model " + model_name + " load complete")
141
  try:
142
  if (user_uploaded):
143
- results = uncached_compute_similarity(sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type)
144
  else:
145
  display_area.text("Computing vectors for sentences")
146
- results = cached_compute_similarity(sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type)
147
  display_area.text("Similarity computation complete")
148
  return results
149
 
@@ -263,15 +268,18 @@ def app_main(app_mode,example_files,model_name_files,clus_types):
263
  st.session_state["model_name"] = selected_model
264
  st.session_state["threshold"] = threshold
265
  st.session_state["overlapped"] = cluster_types[clustering_type]["type"]
266
- results = run_test(model_names,run_model,sentences,display_area,threshold,(uploaded_file is not None),(len(custom_model_selection) != 0),cluster_types[clustering_type]["type"])
267
  display_area.empty()
268
  with display_area.container():
269
- device = 'GPU' if torch.cuda.is_available() else 'CPU'
270
- response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
271
- if (len(custom_model_selection) != 0):
272
- st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
273
- display_results(sentences,results,response_info,app_mode,run_model)
274
- #st.json(results)
 
 
 
275
  st.download_button(
276
  label="Download results as json",
277
  data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
 
6
  import pdb
7
  import json
8
  from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
9
+ from twc_openai_embeddings import OpenAIModel
10
  from twc_clustering import TWCClustering
11
  import torch
12
  import requests
 
61
 
62
  def construct_model_info_for_display(model_names):
63
  options_arr = []
64
+ markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>The selected models satisfy one or more of the following (1) state-of-the-art (2) the most downloaded models on Hugging Face (3) Large Language Models (e.g. GPT-3)</i></div>"
65
  markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
66
  for node in model_names:
67
  options_arr .append(node["name"])
 
97
  ret_model.init_model(load_model_name)
98
  assert(ret_model is not None)
99
  except Exception as e:
100
+ st.error(f"Unable to load model class:{model_class} model_name: {model_name} load_model_name: {load_model_name} {str(e)}")
101
  pass
102
  return ret_model
103
 
104
 
105
 
106
  @st.experimental_memo
107
+ def cached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,_cluster,clustering_type):
108
+ texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
109
  results = _cluster.cluster(None,texts,embeddings,threshold,clustering_type)
110
  return results
111
 
112
 
113
+ def uncached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,cluster,clustering_type):
114
  with st.spinner('Computing vectors for sentences'):
115
+ texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
116
  results = cluster.cluster(None,texts,embeddings,threshold,clustering_type)
117
  #st.success("Similarity computation complete")
118
  return results
 
125
  return get_model_info(model_names,DEFAULT_HF_MODEL)
126
 
127
 
128
+ def run_test(model_names,model_name,input_file_name,sentences,display_area,threshold,user_uploaded,custom_model,clustering_type):
129
  display_area.text("Loading model:" + model_name)
130
  #Note. model_name may get mapped to new name in the call below for custom models
131
  orig_model_name = model_name
 
137
  if ("Note" in model_info):
138
  fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
139
  display_area.write(fail_link)
140
+ if (user_uploaded and "custom_load" in model_info and model_info["custom_load"] == "False"):
141
+ fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
142
+ display_area.write(fail_link)
143
+ return {"error":fail_link}
144
  model = load_model(model_name,model_info["class"],load_model_name)
145
  display_area.text("Model " + model_name + " load complete")
146
  try:
147
  if (user_uploaded):
148
+ results = uncached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type)
149
  else:
150
  display_area.text("Computing vectors for sentences")
151
+ results = cached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type)
152
  display_area.text("Similarity computation complete")
153
  return results
154
 
 
268
  st.session_state["model_name"] = selected_model
269
  st.session_state["threshold"] = threshold
270
  st.session_state["overlapped"] = cluster_types[clustering_type]["type"]
271
+ results = run_test(model_names,run_model,st.session_state["file_name"],sentences,display_area,threshold,(uploaded_file is not None),(len(custom_model_selection) != 0),cluster_types[clustering_type]["type"])
272
  display_area.empty()
273
  with display_area.container():
274
+ if ("error" in results):
275
+ st.error(results["error"])
276
+ else:
277
+ device = 'GPU' if torch.cuda.is_available() else 'CPU'
278
+ response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
279
+ if (len(custom_model_selection) != 0):
280
+ st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
281
+ display_results(sentences,results,response_info,app_mode,run_model)
282
+ #st.json(results)
283
  st.download_button(
284
  label="Download results as json",
285
  data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
clus_app_models.json CHANGED
@@ -84,7 +84,67 @@
84
  },
85
  "paper_url":"https://arxiv.org/abs/2104.08821v4",
86
  "mark":"True",
87
- "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
 
90
  ]
 
84
  },
85
  "paper_url":"https://arxiv.org/abs/2104.08821v4",
86
  "mark":"True",
87
+ "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
88
+ { "name":"GPT-3-175B (text-similarity-davinci-001)" ,
89
+ "model":"text-similarity-davinci-001",
90
+ "fork_url":"https://openai.com/api/",
91
+ "orig_author_url":"https://openai.com/api/",
92
+ "orig_author":"OpenAI",
93
+ "sota_info": {
94
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
95
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
96
+ },
97
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
98
+ "mark":"True",
99
+ "custom_load":"False",
100
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
101
+ "alt_url":"https://openai.com/api/",
102
+ "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
103
+ { "name":"GPT-3-6.7B (text-similarity-curie-001)" ,
104
+ "model":"text-similarity-curie-001",
105
+ "fork_url":"https://openai.com/api/",
106
+ "orig_author_url":"https://openai.com/api/",
107
+ "orig_author":"OpenAI",
108
+ "sota_info": {
109
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
110
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
111
+ },
112
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
113
+ "mark":"True",
114
+ "custom_load":"False",
115
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
116
+ "alt_url":"https://openai.com/api/",
117
+ "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
118
+ { "name":"GPT-3-1.3B (text-similarity-babbage-001)" ,
119
+ "model":"text-similarity-babbage-001",
120
+ "fork_url":"https://openai.com/api/",
121
+ "orig_author_url":"https://openai.com/api/",
122
+ "orig_author":"OpenAI",
123
+ "sota_info": {
124
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
125
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
126
+ },
127
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
128
+ "mark":"True",
129
+ "custom_load":"False",
130
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
131
+ "alt_url":"https://openai.com/api/",
132
+ "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
133
+ { "name":"GPT-3-350M (text-similarity-ada-001)" ,
134
+ "model":"text-similarity-ada-001",
135
+ "fork_url":"https://openai.com/api/",
136
+ "orig_author_url":"https://openai.com/api/",
137
+ "orig_author":"OpenAI",
138
+ "sota_info": {
139
+ "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
140
+ "sota_link":"https://paperswithcode.com/method/gpt-3"
141
+ },
142
+ "paper_url":"https://arxiv.org/abs/2005.14165v4",
143
+ "mark":"True",
144
+ "custom_load":"False",
145
+ "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
146
+ "alt_url":"https://openai.com/api/",
147
+ "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"}
148
 
149
 
150
  ]
text-similarity-ada-001imdb_sent_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-ada-001larger_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-ada-001small_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-babbage-001imdb_sent_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-babbage-001larger_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-babbage-001small_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-curie-001imdb_sent_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-curie-001larger_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-curie-001small_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
text-similarity-davinci-001small_test_embed.json ADDED
The diff for this file is too large to render. See raw diff
 
twc_embeddings.py CHANGED
@@ -32,7 +32,7 @@ class CausalLMModel:
32
  self.model.eval()
33
  self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
34
 
35
- def compute_embeddings(self,input_data,is_file):
36
  if (self.debug):
37
  print("Computing embeddings for:", input_data[:20])
38
  model = self.model
@@ -160,7 +160,7 @@ class SGPTQnAModel:
160
 
161
  return embeddings
162
 
163
- def compute_embeddings(self,input_data,is_file):
164
  if (self.debug):
165
  print("Computing embeddings for:", input_data[:20])
166
  model = self.model
@@ -215,7 +215,7 @@ class SimCSEModel:
215
  self.tokenizer = AutoTokenizer.from_pretrained(model_name)
216
  self.model = AutoModel.from_pretrained(model_name)
217
 
218
- def compute_embeddings(self,input_data,is_file):
219
  texts = read_text(input_data) if is_file == True else input_data
220
  inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
221
  with torch.no_grad():
@@ -266,7 +266,7 @@ class SGPTModel:
266
  # Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
267
  self.model.eval()
268
 
269
- def compute_embeddings(self,input_data,is_file):
270
  if (self.debug):
271
  print("Computing embeddings for:", input_data[:20])
272
  model = self.model
@@ -353,7 +353,7 @@ class HFModel:
353
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
354
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
355
 
356
- def compute_embeddings(self,input_data,is_file):
357
  #print("Computing embeddings for:", input_data[:20])
358
  model = self.model
359
  tokenizer = self.tokenizer
@@ -403,5 +403,5 @@ if __name__ == '__main__':
403
  results = parser.parse_args()
404
  obj = HFModel()
405
  obj.init_model(results.model)
406
- texts, embeddings = obj.compute_embeddings(results.input,is_file = True)
407
  results = obj.output_results(results.output,texts,embeddings)
 
32
  self.model.eval()
33
  self.prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'
34
 
35
+ def compute_embeddings(self,input_file_name,input_data,is_file):
36
  if (self.debug):
37
  print("Computing embeddings for:", input_data[:20])
38
  model = self.model
 
160
 
161
  return embeddings
162
 
163
+ def compute_embeddings(self,input_file_name,input_data,is_file):
164
  if (self.debug):
165
  print("Computing embeddings for:", input_data[:20])
166
  model = self.model
 
215
  self.tokenizer = AutoTokenizer.from_pretrained(model_name)
216
  self.model = AutoModel.from_pretrained(model_name)
217
 
218
+ def compute_embeddings(self,input_file_name,input_data,is_file):
219
  texts = read_text(input_data) if is_file == True else input_data
220
  inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
221
  with torch.no_grad():
 
266
  # Deactivate Dropout (There is no dropout in the above models so it makes no difference here but other SGPT models may have dropout)
267
  self.model.eval()
268
 
269
+ def compute_embeddings(self,input_file_name,input_data,is_file):
270
  if (self.debug):
271
  print("Computing embeddings for:", input_data[:20])
272
  model = self.model
 
353
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
354
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
355
 
356
+ def compute_embeddings(self,input_file_name,input_data,is_file):
357
  #print("Computing embeddings for:", input_data[:20])
358
  model = self.model
359
  tokenizer = self.tokenizer
 
403
  results = parser.parse_args()
404
  obj = HFModel()
405
  obj.init_model(results.model)
406
+ texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True)
407
  results = obj.output_results(results.output,texts,embeddings)
twc_openai_embeddings.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.spatial.distance import cosine
2
+ import argparse
3
+ import json
4
+ import os
5
+ import openai
6
+ import pdb
7
+
8
+ def read_text(input_file):
9
+ arr = open(input_file).read().split("\n")
10
+ return arr[:-1]
11
+
12
+
13
+ class OpenAIModel:
14
+ def __init__(self):
15
+ self.debug = False
16
+ self.model_name = None
17
+ self.skip_key = True
18
+ print("In OpenAI API constructor")
19
+
20
+
21
+ def init_model(self,model_name = None):
22
+ #print("OpenAI: Init model",model_name)
23
+ openai.api_key = os.getenv("OPENAI_API_KEY")
24
+ if (openai.api_key == None):
25
+ openai.api_key = ""
26
+ print("API key not set")
27
+
28
+ if (len(openai.api_key) == 0 and not self.skip_key):
29
+ print("Open API key not set")
30
+
31
+ if (model_name is None):
32
+ self.model_name = "text-similarity-ada-001"
33
+ else:
34
+ self.model_name = model_name
35
+ print("OpenAI: Init model complete",model_name)
36
+
37
+
38
+ def compute_embeddings(self,input_file_name,input_data,is_file):
39
+ if (len(openai.api_key) == 0 and not self.skip_key):
40
+ print("Open API key not set")
41
+ return [],[]
42
+ #print("In compute embeddings after key check")
43
+ in_file = self.model_name + '.'.join(input_file_name.split('.')[:-1]) + "_embed.json"
44
+ cached = False
45
+ try:
46
+ fp = open(in_file)
47
+ cached = True
48
+ embeddings = json.load(fp)
49
+ print("Using cached embeddings")
50
+ except:
51
+ pass
52
+
53
+ texts = read_text(input_data) if is_file == True else input_data
54
+ if (not cached):
55
+ print(f"Computing embeddings for {input_file_name} and model {self.model_name}")
56
+ response = openai.Embedding.create(
57
+ input=texts,
58
+ model=self.model_name
59
+ )
60
+ embeddings = []
61
+ for i in range(len(response['data'])):
62
+ embeddings.append(response['data'][i]['embedding'])
63
+ if (not cached):
64
+ with open(in_file,"w") as fp:
65
+ json.dump(embeddings,fp)
66
+ return texts,embeddings
67
+
68
+ def output_results(self,output_file,texts,embeddings,main_index = 0):
69
+ if (len(openai.api_key) == 0 and not self.skip_key):
70
+ print("Open API key not set")
71
+ return {}
72
+ #print("In output results after key check")
73
+ # Calculate cosine similarities
74
+ # Cosine similarities are in [-1, 1]. Higher means more similar
75
+ cosine_dict = {}
76
+ #print("Total sentences",len(texts))
77
+ for i in range(len(texts)):
78
+ cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i])
79
+
80
+ #print("Input sentence:",texts[main_index])
81
+ sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True))
82
+ if (self.debug):
83
+ for key in sorted_dict:
84
+ print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key]))
85
+ if (output_file is not None):
86
+ with open(output_file,"w") as fp:
87
+ fp.write(json.dumps(sorted_dict,indent=0))
88
+ return sorted_dict
89
+
90
+
91
+
92
+ if __name__ == '__main__':
93
+ parser = argparse.ArgumentParser(description='OpenAI model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
94
+ parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences")
95
+ parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results")
96
+ parser.add_argument('-model', action="store", dest="model",default="text-similarity-ada-001",help="model name")
97
+
98
+ results = parser.parse_args()
99
+ obj = OpenAIModel()
100
+ obj.init_model(results.model)
101
+ texts, embeddings = obj.compute_embeddings(results.input,is_file = True)
102
+ results = obj.output_results(results.output,texts,embeddings)