nyanko7 commited on
Commit
7b772c9
Β·
verified Β·
1 Parent(s): e11ace5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -20,9 +20,7 @@ from diffusers import AutoencoderKL
20
  from torch import Tensor, nn
21
  from transformers import CLIPTextModel, CLIPTokenizer
22
  from transformers import T5EncoderModel, T5Tokenizer
23
- from safetensors.torch import load_file
24
- # from torch.profiler import profile, record_function, ProfilerActivity
25
- # from optimum.quanto import freeze, qfloat8, quantize
26
 
27
 
28
  # ---------------- Encoders ----------------
@@ -67,8 +65,8 @@ device = "cuda"
67
  t5 = HFEmbedder("google/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
68
  clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
69
  ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
70
- # quantize(t5, weights=qfloat8)
71
- # freeze(t5)
72
 
73
 
74
  # ---------------- NF4 ----------------
@@ -746,6 +744,7 @@ sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename=
746
  sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
747
  model = Flux().to(dtype=torch.bfloat16, device="cuda")
748
  result = model.load_state_dict(sd)
 
749
  print(result)
750
 
751
  # model = Flux().to(dtype=torch.bfloat16, device="cuda")
@@ -764,8 +763,10 @@ def generate_image(
764
  device = "cuda" if torch.cuda.is_available() else "cpu"
765
  torch_device = torch.device(device)
766
 
767
- global model
768
- model = model.to(torch_device)
 
 
769
 
770
  if do_img2img and init_image is not None:
771
  init_image = get_image(init_image)
 
20
  from torch import Tensor, nn
21
  from transformers import CLIPTextModel, CLIPTokenizer
22
  from transformers import T5EncoderModel, T5Tokenizer
23
+ from optimum.quanto import freeze, qfloat8, quantize
 
 
24
 
25
 
26
  # ---------------- Encoders ----------------
 
65
  t5 = HFEmbedder("google/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
66
  clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
67
  ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
68
+ quantize(t5, weights=qfloat8)
69
+ freeze(t5)
70
 
71
 
72
  # ---------------- NF4 ----------------
 
744
  sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
745
  model = Flux().to(dtype=torch.bfloat16, device="cuda")
746
  result = model.load_state_dict(sd)
747
+ model_zero_init = False
748
  print(result)
749
 
750
  # model = Flux().to(dtype=torch.bfloat16, device="cuda")
 
763
  device = "cuda" if torch.cuda.is_available() else "cpu"
764
  torch_device = torch.device(device)
765
 
766
+ global model, model_zero_init
767
+ if not model_zero_init:
768
+ model = model.to(torch_device)
769
+ model_zero_init = True
770
 
771
  if do_img2img and init_image is not None:
772
  init_image = get_image(init_image)