|
|
|
import spaces |
|
|
|
import time |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from torchvision import transforms |
|
from dataclasses import dataclass |
|
import math |
|
from typing import Callable |
|
|
|
from tqdm import tqdm |
|
import bitsandbytes as bnb |
|
from bitsandbytes.nn.modules import Params4bit, QuantState |
|
|
|
import torch |
|
import random |
|
from einops import rearrange, repeat |
|
from diffusers import AutoencoderKL |
|
from torch import Tensor, nn |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from transformers import pipeline |
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
|
|
|
|
class HFEmbedder(nn.Module): |
|
def __init__(self, version: str, max_length: int, **hf_kwargs): |
|
super().__init__() |
|
self.is_clip = version.startswith("openai") |
|
self.max_length = max_length |
|
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" |
|
|
|
if self.is_clip: |
|
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) |
|
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) |
|
else: |
|
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) |
|
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) |
|
|
|
self.hf_module = self.hf_module.eval().requires_grad_(False) |
|
|
|
def forward(self, text: list[str]) -> Tensor: |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
|
|
outputs = self.hf_module( |
|
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
) |
|
return outputs[self.output_key] |
|
|
|
|
|
device = "cuda" |
|
t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device) |
|
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) |
|
ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def functional_linear_4bits(x, weight, bias): |
|
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state) |
|
out = out.to(x) |
|
return out |
|
|
|
|
|
def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState: |
|
if state is None: |
|
return None |
|
|
|
device = device or state.absmax.device |
|
|
|
state2 = ( |
|
QuantState( |
|
absmax=state.state2.absmax.to(device), |
|
shape=state.state2.shape, |
|
code=state.state2.code.to(device), |
|
blocksize=state.state2.blocksize, |
|
quant_type=state.state2.quant_type, |
|
dtype=state.state2.dtype, |
|
) |
|
if state.nested |
|
else None |
|
) |
|
|
|
return QuantState( |
|
absmax=state.absmax.to(device), |
|
shape=state.shape, |
|
code=state.code.to(device), |
|
blocksize=state.blocksize, |
|
quant_type=state.quant_type, |
|
dtype=state.dtype, |
|
offset=state.offset.to(device) if state.nested else None, |
|
state2=state2, |
|
) |
|
|
|
|
|
class ForgeParams4bit(Params4bit): |
|
def to(self, *args, **kwargs): |
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) |
|
if device is not None and device.type == "cuda" and not self.bnb_quantized: |
|
return self._quantize(device) |
|
else: |
|
n = ForgeParams4bit( |
|
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking), |
|
requires_grad=self.requires_grad, |
|
quant_state=copy_quant_state(self.quant_state, device), |
|
|
|
|
|
compress_statistics=False, |
|
blocksize=64, |
|
quant_type=self.quant_type, |
|
quant_storage=self.quant_storage, |
|
bnb_quantized=self.bnb_quantized, |
|
module=self.module |
|
) |
|
self.module.quant_state = n.quant_state |
|
self.data = n.data |
|
self.quant_state = n.quant_state |
|
return n |
|
|
|
|
|
class ForgeLoader4Bit(torch.nn.Module): |
|
def __init__(self, *, device, dtype, quant_type, **kwargs): |
|
super().__init__() |
|
self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype)) |
|
self.weight = None |
|
self.quant_state = None |
|
self.bias = None |
|
self.quant_type = quant_type |
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars): |
|
super()._save_to_state_dict(destination, prefix, keep_vars) |
|
quant_state = getattr(self.weight, "quant_state", None) |
|
if quant_state is not None: |
|
for k, v in quant_state.as_dict(packed=True).items(): |
|
destination[prefix + "weight." + k] = v if keep_vars else v.detach() |
|
return |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")} |
|
|
|
if any('bitsandbytes' in k for k in quant_state_keys): |
|
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys} |
|
|
|
self.weight = ForgeParams4bit.from_prequantized( |
|
data=state_dict[prefix + 'weight'], |
|
quantized_stats=quant_state_dict, |
|
requires_grad=False, |
|
|
|
device=torch.device('cuda'), |
|
module=self |
|
) |
|
self.quant_state = self.weight.quant_state |
|
|
|
if prefix + 'bias' in state_dict: |
|
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy)) |
|
|
|
del self.dummy |
|
elif hasattr(self, 'dummy'): |
|
if prefix + 'weight' in state_dict: |
|
self.weight = ForgeParams4bit( |
|
state_dict[prefix + 'weight'].to(self.dummy), |
|
requires_grad=False, |
|
compress_statistics=True, |
|
quant_type=self.quant_type, |
|
quant_storage=torch.uint8, |
|
module=self, |
|
) |
|
self.quant_state = self.weight.quant_state |
|
|
|
if prefix + 'bias' in state_dict: |
|
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy)) |
|
|
|
del self.dummy |
|
else: |
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
|
|
class Linear(ForgeLoader4Bit): |
|
def __init__(self, *args, device=None, dtype=None, **kwargs): |
|
super().__init__(device=device, dtype=dtype, quant_type='nf4') |
|
|
|
def forward(self, x): |
|
self.weight.quant_state = self.quant_state |
|
|
|
if self.bias is not None and self.bias.dtype != x.dtype: |
|
|
|
|
|
self.bias.data = self.bias.data.to(x.dtype) |
|
|
|
return functional_linear_4bits(x, self.weight, self.bias) |
|
|
|
|
|
nn.Linear = Linear |
|
|
|
|
|
|
|
|
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: |
|
q, k = apply_rope(q, k, pe) |
|
|
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) |
|
|
|
x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1) |
|
|
|
return x |
|
|
|
|
|
def rope(pos, dim, theta): |
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim |
|
omega = 1.0 / (theta ** scale) |
|
|
|
|
|
out = pos.unsqueeze(-1) * omega.unsqueeze(0) |
|
|
|
cos_out = torch.cos(out) |
|
sin_out = torch.sin(out) |
|
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) |
|
|
|
|
|
b, n, d, _ = out.shape |
|
out = out.view(b, n, d, 2, 2) |
|
|
|
return out.float() |
|
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: |
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) |
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) |
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] |
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] |
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) |
|
|
|
|
|
class EmbedND(nn.Module): |
|
def __init__(self, dim: int, theta: int, axes_dim: list[int]): |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
|
|
def forward(self, ids: Tensor) -> Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], |
|
dim=-3, |
|
) |
|
|
|
return emb.unsqueeze(1) |
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
t = time_factor * t |
|
half = dim // 2 |
|
|
|
|
|
|
|
|
|
|
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) |
|
|
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
if torch.is_floating_point(t): |
|
embedding = embedding.to(t) |
|
return embedding |
|
|
|
|
|
class MLPEmbedder(nn.Module): |
|
def __init__(self, in_dim: int, hidden_dim: int): |
|
super().__init__() |
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) |
|
self.silu = nn.SiLU() |
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.out_layer(self.silu(self.in_layer(x))) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x: Tensor): |
|
x_dtype = x.dtype |
|
x = x.float() |
|
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) |
|
return (x * rrms).to(dtype=x_dtype) * self.scale |
|
|
|
|
|
class QKNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.query_norm = RMSNorm(dim) |
|
self.key_norm = RMSNorm(dim) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: |
|
q = self.query_norm(q) |
|
k = self.key_norm(k) |
|
return q.to(v), k.to(v) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.norm = QKNorm(head_dim) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward(self, x: Tensor, pe: Tensor) -> Tensor: |
|
qkv = self.qkv(x) |
|
|
|
B, L, _ = qkv.shape |
|
qkv = qkv.view(B, L, 3, self.num_heads, -1) |
|
q, k, v = qkv.permute(2, 0, 3, 1, 4) |
|
q, k = self.norm(q, k, v) |
|
x = attention(q, k, v, pe=pe) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class ModulationOut: |
|
shift: Tensor |
|
scale: Tensor |
|
gate: Tensor |
|
|
|
|
|
class Modulation(nn.Module): |
|
def __init__(self, dim: int, double: bool): |
|
super().__init__() |
|
self.is_double = double |
|
self.multiplier = 6 if double else 3 |
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) |
|
|
|
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: |
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) |
|
|
|
return ( |
|
ModulationOut(*out[:3]), |
|
ModulationOut(*out[3:]) if self.is_double else None, |
|
) |
|
|
|
|
|
class DoubleStreamBlock(nn.Module): |
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): |
|
super().__init__() |
|
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.img_mod = Modulation(hidden_size, double=True) |
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
self.txt_mod = Modulation(hidden_size, double=True) |
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
|
|
B, L, _ = img_qkv.shape |
|
H = self.num_heads |
|
D = img_qkv.shape[-1] // (3 * H) |
|
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
|
|
B, L, _ = txt_qkv.shape |
|
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
|
|
q = torch.cat((txt_q, img_q), dim=2) |
|
k = torch.cat((txt_k, img_k), dim=2) |
|
v = torch.cat((txt_v, img_v), dim=2) |
|
|
|
attn = attention(q, k, v, pe=pe) |
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] |
|
|
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) |
|
|
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) |
|
return img, txt |
|
|
|
|
|
class SingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: float | None = None, |
|
): |
|
super().__init__() |
|
self.hidden_dim = hidden_size |
|
self.num_heads = num_heads |
|
head_dim = hidden_size // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) |
|
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) |
|
|
|
self.norm = QKNorm(head_dim) |
|
|
|
self.hidden_size = hidden_size |
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.mlp_act = nn.GELU(approximate="tanh") |
|
self.modulation = Modulation(hidden_size, double=False) |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: |
|
mod, _ = self.modulation(vec) |
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
|
|
|
|
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads) |
|
q, k, v = qkv.permute(2, 0, 3, 1, 4) |
|
q, k = self.norm(q, k, v) |
|
|
|
|
|
attn = attention(q, k, v, pe=pe) |
|
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) |
|
return x + mod.gate * output |
|
|
|
|
|
class LastLayer(nn.Module): |
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor: |
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) |
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class FluxParams: |
|
in_channels: int = 64 |
|
vec_in_dim: int = 768 |
|
context_in_dim: int = 4096 |
|
hidden_size: int = 3072 |
|
mlp_ratio: float = 4.0 |
|
num_heads: int = 24 |
|
depth: int = 19 |
|
depth_single_blocks: int = 38 |
|
axes_dim: list = [16, 56, 56] |
|
theta: int = 10_000 |
|
qkv_bias: bool = True |
|
guidance_embed: bool = True |
|
|
|
|
|
class Flux(nn.Module): |
|
""" |
|
Transformer model for flow matching on sequences. |
|
""" |
|
|
|
def __init__(self, params = FluxParams()): |
|
super().__init__() |
|
|
|
self.params = params |
|
self.in_channels = params.in_channels |
|
self.out_channels = self.in_channels |
|
if params.hidden_size % params.num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" |
|
) |
|
pe_dim = params.hidden_size // params.num_heads |
|
if sum(params.axes_dim) != pe_dim: |
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = params.hidden_size |
|
self.num_heads = params.num_heads |
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) |
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) |
|
self.guidance_in = ( |
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() |
|
) |
|
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
qkv_bias=params.qkv_bias, |
|
) |
|
for _ in range(params.depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) |
|
for _ in range(params.depth_single_blocks) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
guidance: Tensor | None = None, |
|
) -> Tensor: |
|
if img.ndim != 3 or txt.ndim != 3: |
|
raise ValueError("Input img and txt tensors must have 3 dimensions.") |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256)) |
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
for block in self.double_blocks: |
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) |
|
|
|
img = torch.cat((txt, img), 1) |
|
for block in self.single_blocks: |
|
img = block(img, vec=vec, pe=pe) |
|
img = img[:, txt.shape[1] :, ...] |
|
|
|
img = self.final_layer(img, vec) |
|
return img |
|
|
|
|
|
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: |
|
bs, c, h, w = img.shape |
|
if bs == 1 and not isinstance(prompt, str): |
|
bs = len(prompt) |
|
|
|
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) |
|
if img.shape[0] == 1 and bs > 1: |
|
img = repeat(img, "1 ... -> bs ...", bs=bs) |
|
|
|
img_ids = torch.zeros(h // 2, w // 2, 3) |
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] |
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] |
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) |
|
|
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
txt = t5(prompt) |
|
if txt.shape[0] == 1 and bs > 1: |
|
txt = repeat(txt, "1 ... -> bs ...", bs=bs) |
|
txt_ids = torch.zeros(bs, txt.shape[1], 3) |
|
|
|
vec = clip(prompt) |
|
if vec.shape[0] == 1 and bs > 1: |
|
vec = repeat(vec, "1 ... -> bs ...", bs=bs) |
|
|
|
return { |
|
"img": img, |
|
"img_ids": img_ids.to(img.device), |
|
"txt": txt.to(img.device), |
|
"txt_ids": txt_ids.to(img.device), |
|
"vec": vec.to(img.device), |
|
} |
|
|
|
|
|
def time_shift(mu: float, sigma: float, t: Tensor): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) |
|
|
|
|
|
def get_lin_function( |
|
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 |
|
) -> Callable[[float], float]: |
|
m = (y2 - y1) / (x2 - x1) |
|
b = y1 - m * x1 |
|
return lambda x: m * x + b |
|
|
|
|
|
def get_schedule( |
|
num_steps: int, |
|
image_seq_len: int, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.15, |
|
shift: bool = True, |
|
) -> list[float]: |
|
|
|
timesteps = torch.linspace(1, 0, num_steps + 1) |
|
|
|
|
|
if shift: |
|
|
|
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) |
|
timesteps = time_shift(mu, 1.0, timesteps) |
|
|
|
return timesteps.tolist() |
|
|
|
|
|
def denoise( |
|
model: Flux, |
|
|
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
vec: Tensor, |
|
|
|
timesteps: list[float], |
|
guidance: float = 4.0, |
|
): |
|
|
|
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) |
|
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1): |
|
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) |
|
pred = model( |
|
img=img, |
|
img_ids=img_ids, |
|
txt=txt, |
|
txt_ids=txt_ids, |
|
y=vec, |
|
timesteps=t_vec, |
|
guidance=guidance_vec, |
|
) |
|
img = img + (t_prev - t_curr) * pred |
|
return img |
|
|
|
|
|
def unpack(x: Tensor, height: int, width: int) -> Tensor: |
|
return rearrange( |
|
x, |
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)", |
|
h=math.ceil(height / 16), |
|
w=math.ceil(width / 16), |
|
ph=2, |
|
pw=2, |
|
) |
|
|
|
@dataclass |
|
class SamplingOptions: |
|
prompt: str |
|
width: int |
|
height: int |
|
guidance: float |
|
seed: int | None |
|
|
|
|
|
def get_image(image) -> torch.Tensor | None: |
|
if image is None: |
|
return None |
|
image = Image.fromarray(image).convert("RGB") |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Lambda(lambda x: 2.0 * x - 1.0), |
|
]) |
|
img: torch.Tensor = transform(image) |
|
return img[None, ...] |
|
|
|
|
|
|
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors")) |
|
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k} |
|
model = Flux().to(dtype=torch.bfloat16, device="cuda") |
|
result = model.load_state_dict(sd) |
|
model_zero_init = False |
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
@torch.no_grad() |
|
def generate_image( |
|
prompt, width, height, guidance, inference_steps, seed, |
|
do_img2img, init_image, image2image_strength, resize_img, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
translated_prompt = prompt |
|
if any('\u3131' <= c <= '\u318E' or '\uAC00' <= c <= '\uD7A3' for c in prompt): |
|
translated_prompt = translator(prompt, max_length=512)[0]['translation_text'] |
|
print(f"Translated prompt: {translated_prompt}") |
|
prompt = translated_prompt |
|
|
|
if seed == 0: |
|
seed = int(random.random() * 1000000) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_device = torch.device(device) |
|
|
|
global model, model_zero_init |
|
if not model_zero_init: |
|
model = model.to(torch_device) |
|
model_zero_init = True |
|
|
|
if do_img2img and init_image is not None: |
|
init_image = get_image(init_image) |
|
if resize_img: |
|
init_image = torch.nn.functional.interpolate(init_image, (height, width)) |
|
else: |
|
h, w = init_image.shape[-2:] |
|
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)] |
|
height = init_image.shape[-2] |
|
width = init_image.shape[-1] |
|
init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample() |
|
init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator) |
|
|
|
num_steps = inference_steps |
|
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True) |
|
|
|
if do_img2img and init_image is not None: |
|
t_idx = int((1 - image2image_strength) * num_steps) |
|
t = timesteps[t_idx] |
|
timesteps = timesteps[t_idx:] |
|
x = t * x + (1.0 - t) * init_image.to(x.dtype) |
|
|
|
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt) |
|
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance) |
|
|
|
|
|
|
|
|
|
x = unpack(x.float(), height, width) |
|
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): |
|
x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor |
|
x = ae.decode(x).sample |
|
|
|
x = x.clamp(-1, 1) |
|
x = rearrange(x[0], "c h w -> h w c") |
|
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) |
|
|
|
|
|
return img, seed, translated_prompt |
|
|
|
css = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
|
|
def create_demo(): |
|
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt(νκΈ κ°λ₯)", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture") |
|
|
|
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360) |
|
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768) |
|
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5) |
|
inference_steps = gr.Slider( |
|
label="Inference steps", |
|
minimum=1, |
|
maximum=30, |
|
step=1, |
|
value=30, |
|
) |
|
seed = gr.Number(label="Seed", precision=-1) |
|
do_img2img = gr.Checkbox(label="Image to Image", value=False) |
|
init_image = gr.Image(label="Input Image", visible=False) |
|
image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False) |
|
resize_img = gr.Checkbox(label="Resize image", value=True, visible=False) |
|
generate_button = gr.Button("Generate") |
|
|
|
with gr.Column(): |
|
output_image = gr.Image(label="Generated Image") |
|
output_seed = gr.Text(label="Used Seed") |
|
|
|
do_img2img.change( |
|
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)], |
|
inputs=[do_img2img], |
|
outputs=[init_image, image2image_strength, resize_img] |
|
) |
|
|
|
generate_button.click( |
|
fn=generate_image, |
|
inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img], |
|
outputs=[output_image, output_seed] |
|
) |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_demo() |
|
demo.launch() |