import os import requests import streamlit as st from io import BytesIO from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from transformers import pipeline import torch # Set up the page configuration st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="📄") # Load the summarization pipeline model @st.cache_resource def load_summarization_pipeline(): summarizer = pipeline("summarization", model="facebook/bart-large-cnn") return summarizer summarizer = load_summarization_pipeline() # Dictionary of Hugging Face PDF URLs grouped by folders PDF_FOLDERS = { # Add folder-specific lists of PDF URLs as shown above } # Helper function to convert Hugging Face blob URLs to direct download URLs def get_huggingface_raw_url(url): if "huggingface.co" in url and "/blob/" in url: return url.replace("/blob/", "/resolve/") return url # Fetch and extract text from all PDFs in specified folders def fetch_pdf_text_from_folders(pdf_folders): all_text = "" for folder_name, urls in pdf_folders.items(): folder_text = f"\n[Folder: {folder_name}]\n" for url in urls: raw_url = get_huggingface_raw_url(url) try: response = requests.get(raw_url) response.raise_for_status() pdf_file = BytesIO(response.content) pdf_reader = PdfReader(pdf_file) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: folder_text += page_text except requests.RequestException as e: st.error(f"Failed to fetch PDF from URL: {url} - {e}") except Exception as e: st.error(f"Failed to read PDF from URL {url}: {e}") all_text += folder_text return all_text # Split text into manageable chunks @st.cache_data def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks # Initialize embedding function embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Create a FAISS vector store with embeddings, checking for empty chunks @st.cache_resource def load_or_create_vector_store(text_chunks): if not text_chunks: st.error("No valid text chunks found to create a vector store. Please check your PDF URLs or file content.") return None vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) return vector_store # Generate summary based on the retrieved text def generate_summary_with_huggingface(query, retrieved_text): summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}" max_input_length = 1024 summarization_input = summarization_input[:max_input_length] summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False) return summary[0]["summary_text"] # Generate response for user query def user_input(user_question, vector_store): if vector_store is None: return "Vector store is empty due to failed PDF loading or empty documents." docs = vector_store.similarity_search(user_question) context_text = " ".join([doc.page_content for doc in docs]) return generate_summary_with_huggingface(user_question, context_text) # Main function to run the Streamlit app def main(): st.title("📄 Gen AI Lawyers Guide") raw_text = fetch_pdf_text_from_folders(PDF_FOLDERS) text_chunks = get_text_chunks(raw_text) vector_store = load_or_create_vector_store(text_chunks) user_question = st.text_input("Ask a Question:", placeholder="Type your question here...") if st.button("Get Response"): if not user_question: st.warning("Please enter a question before submitting.") else: with st.spinner("Generating response..."): answer = user_input(user_question, vector_store) st.markdown(f"**🤖 AI:** {answer}") if __name__ == "__main__": main()