Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
from io import BytesIO | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from transformers import pipeline | |
import torch | |
# Set up the page configuration | |
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="π") | |
# Load the summarization pipeline model | |
def load_summarization_pipeline(): | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
return summarizer | |
summarizer = load_summarization_pipeline() | |
# Dictionary of Hugging Face PDF URLs grouped by folders | |
PDF_FOLDERS = { | |
# Add folder-specific lists of PDF URLs as shown above | |
} | |
# Helper function to convert Hugging Face blob URLs to direct download URLs | |
def get_huggingface_raw_url(url): | |
if "huggingface.co" in url and "/blob/" in url: | |
return url.replace("/blob/", "/resolve/") | |
return url | |
# Fetch and extract text from all PDFs in specified folders | |
def fetch_pdf_text_from_folders(pdf_folders): | |
all_text = "" | |
for folder_name, urls in pdf_folders.items(): | |
folder_text = f"\n[Folder: {folder_name}]\n" | |
for url in urls: | |
raw_url = get_huggingface_raw_url(url) | |
try: | |
response = requests.get(raw_url) | |
response.raise_for_status() | |
pdf_file = BytesIO(response.content) | |
pdf_reader = PdfReader(pdf_file) | |
for page in pdf_reader.pages: | |
page_text = page.extract_text() | |
if page_text: | |
folder_text += page_text | |
except requests.RequestException as e: | |
st.error(f"Failed to fetch PDF from URL: {url} - {e}") | |
except Exception as e: | |
st.error(f"Failed to read PDF from URL {url}: {e}") | |
all_text += folder_text | |
return all_text | |
# Split text into manageable chunks | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
# Initialize embedding function | |
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
# Create a FAISS vector store with embeddings, checking for empty chunks | |
def load_or_create_vector_store(text_chunks): | |
if not text_chunks: | |
st.error("No valid text chunks found to create a vector store. Please check your PDF URLs or file content.") | |
return None | |
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) | |
return vector_store | |
# Generate summary based on the retrieved text | |
def generate_summary_with_huggingface(query, retrieved_text): | |
summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}" | |
max_input_length = 1024 | |
summarization_input = summarization_input[:max_input_length] | |
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False) | |
return summary[0]["summary_text"] | |
# Generate response for user query | |
def user_input(user_question, vector_store): | |
if vector_store is None: | |
return "Vector store is empty due to failed PDF loading or empty documents." | |
docs = vector_store.similarity_search(user_question) | |
context_text = " ".join([doc.page_content for doc in docs]) | |
return generate_summary_with_huggingface(user_question, context_text) | |
# Main function to run the Streamlit app | |
def main(): | |
st.title("π Gen AI Lawyers Guide") | |
raw_text = fetch_pdf_text_from_folders(PDF_FOLDERS) | |
text_chunks = get_text_chunks(raw_text) | |
vector_store = load_or_create_vector_store(text_chunks) | |
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...") | |
if st.button("Get Response"): | |
if not user_question: | |
st.warning("Please enter a question before submitting.") | |
else: | |
with st.spinner("Generating response..."): | |
answer = user_input(user_question, vector_store) | |
st.markdown(f"**π€ AI:** {answer}") | |
if __name__ == "__main__": | |
main() | |