Spaces:
Paused
Paused
added chat
Browse files
app.py
CHANGED
@@ -1,59 +1,105 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
import numpy as np
|
5 |
-
|
6 |
from lavis.models import load_model_and_preprocess
|
7 |
-
|
8 |
|
9 |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
|
12 |
model, vis_processors, _ = load_model_and_preprocess(
|
13 |
name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device
|
14 |
)
|
15 |
|
16 |
|
17 |
-
def answer_question(image, prompt):
|
18 |
-
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
19 |
-
response = model.generate({"image": image, "prompt": f"Question: {prompt} Answer:"})
|
20 |
-
response = '\n'.join(response)
|
21 |
-
return response
|
22 |
-
|
23 |
def generate_caption(image, caption_type):
|
24 |
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
25 |
-
|
26 |
if caption_type == "Beam Search":
|
27 |
caption = model.generate({"image": image})
|
28 |
else:
|
29 |
-
caption = model.generate(
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
return caption
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
with gr.Blocks() as demo:
|
37 |
-
|
38 |
-
gr.Markdown(
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
with gr.Row():
|
43 |
with gr.Column():
|
44 |
input_image = gr.Image(label="Image", type="pil")
|
45 |
-
caption_type = gr.Radio(
|
|
|
|
|
|
|
|
|
46 |
btn_caption = gr.Button("Generate Caption")
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
question_txt = gr.Textbox(label="Question", lines=1)
|
49 |
btn_answer = gr.Button("Generate Answer")
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import torch
|
6 |
from lavis.models import load_model_and_preprocess
|
7 |
+
from PIL import Image
|
8 |
|
9 |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
11 |
model, vis_processors, _ = load_model_and_preprocess(
|
12 |
name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device
|
13 |
)
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def generate_caption(image, caption_type):
|
17 |
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
18 |
+
|
19 |
if caption_type == "Beam Search":
|
20 |
caption = model.generate({"image": image})
|
21 |
else:
|
22 |
+
caption = model.generate(
|
23 |
+
{"image": image}, use_nucleus_sampling=True, num_captions=3
|
24 |
+
)
|
25 |
+
|
26 |
+
caption = "\n".join(caption)
|
27 |
+
|
28 |
return caption
|
29 |
|
30 |
|
31 |
+
def chat(input_image, question, history):
|
32 |
+
history = history or []
|
33 |
+
question = question.lower()
|
34 |
+
|
35 |
+
image = vis_processors["eval"](input_image).unsqueeze(0).to(device)
|
36 |
+
|
37 |
+
clean = lambda x: x.replace("<p>", "").replace("</p>", "").replace("\n", "")
|
38 |
+
clean_h = lambda x: (clean(x[0]), clean(x[1]))
|
39 |
+
context = list(map(clean_h, history))
|
40 |
+
template = "Question: {} Answer: {}."
|
41 |
+
prompt = (
|
42 |
+
" ".join(
|
43 |
+
[template.format(context[i][0], context[i][1]) for i in range(len(context))]
|
44 |
+
)
|
45 |
+
+ " Question: "
|
46 |
+
+ question
|
47 |
+
+ " Answer:"
|
48 |
+
)
|
49 |
+
|
50 |
+
response = model.generate({"image": image, "prompt": prompt})
|
51 |
+
history.append((question, response[0]))
|
52 |
+
|
53 |
+
return history, history
|
54 |
+
|
55 |
+
|
56 |
+
def clear_chat(history):
|
57 |
+
return [], []
|
58 |
+
|
59 |
+
|
60 |
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("# BLIP-2")
|
62 |
+
gr.Markdown(
|
63 |
+
"## Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models"
|
64 |
+
)
|
65 |
+
gr.Markdown(
|
66 |
+
"This demo uses `OPT2.7B` weights. For more information please see [Github](https://github.com/salesforce/LAVIS/tree/main/projects/blip2) or [Paper](https://arxiv.org/abs/2301.12597)."
|
67 |
+
)
|
68 |
+
|
69 |
with gr.Row():
|
70 |
with gr.Column():
|
71 |
input_image = gr.Image(label="Image", type="pil")
|
72 |
+
caption_type = gr.Radio(
|
73 |
+
["Beam Search", "Nucleus Sampling"],
|
74 |
+
label="Caption Type",
|
75 |
+
value="Beam Search",
|
76 |
+
)
|
77 |
btn_caption = gr.Button("Generate Caption")
|
78 |
+
output_text = gr.Textbox(label="Answer", lines=5)
|
79 |
+
|
80 |
+
with gr.Column():
|
81 |
+
chatbot = gr.Chatbot().style(color_map=("green", "pink"))
|
82 |
+
chat_state = gr.State()
|
83 |
+
|
84 |
question_txt = gr.Textbox(label="Question", lines=1)
|
85 |
btn_answer = gr.Button("Generate Answer")
|
86 |
+
btn_clear = gr.Button("Clear Chat")
|
87 |
+
|
88 |
+
btn_caption.click(
|
89 |
+
generate_caption, inputs=[input_image, caption_type], outputs=[output_text]
|
90 |
+
)
|
91 |
+
|
92 |
+
btn_answer.click(
|
93 |
+
chat,
|
94 |
+
inputs=[input_image, question_txt, chat_state],
|
95 |
+
outputs=[chatbot, chat_state],
|
96 |
+
)
|
97 |
+
|
98 |
+
btn_clear.click(clear_chat, inputs=[chat_state], outputs=[chatbot, chat_state])
|
99 |
+
|
100 |
+
gr.Examples(
|
101 |
+
[["./merlion.png", "Beam Search", "which city is this?", None, None]],
|
102 |
+
inputs=[input_image, caption_type, question_txt, chat_state, chatbot],
|
103 |
+
)
|
104 |
+
|
105 |
+
demo.launch()
|