BLIP-2 / app.py
taesiri's picture
Update app.py
e71d8d9 verified
import os
import gradio as gr
import numpy as np
import torch
from lavis.models import load_model_and_preprocess
from PIL import Image
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model, vis_processors, _ = load_model_and_preprocess(
name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device
)
def generate_caption(image, caption_type):
image = vis_processors["eval"](image).unsqueeze(0).to(device)
if caption_type == "Beam Search":
caption = model.generate({"image": image})
else:
caption = model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
caption = "\n".join(caption)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return caption
def chat(input_image, question, history):
history = history or []
question = question.lower()
image = vis_processors["eval"](input_image).unsqueeze(0).to(device)
clean = lambda x: x.replace("<p>", "").replace("</p>", "").replace("\n", "")
clean_h = lambda x: (clean(x[0]), clean(x[1]))
context = list(map(clean_h, history))
template = "Question: {} Answer: {}."
prompt = (
" ".join(
[template.format(context[i][0], context[i][1]) for i in range(len(context))]
)
+ " Question: "
+ question
+ " Answer:"
)
response = model.generate({"image": image, "prompt": prompt})
history.append((question, response[0]))
return history, history
def clear_chat(history):
return [], []
with gr.Blocks() as demo:
gr.Markdown(
"### BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models"
)
gr.Markdown(
"This demo uses the `pretrain_opt2.7b` weights. For more information please visit [Github](https://github.com/salesforce/LAVIS/tree/main/projects/blip2) or [Paper](https://arxiv.org/abs/2301.12597)."
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image", type="pil")
caption_type = gr.Radio(
["Beam Search", "Nucleus Sampling"],
label="Caption Decoding Strategy",
value="Beam Search",
)
btn_caption = gr.Button("Generate Caption")
output_text = gr.Textbox(label="Answer", lines=5)
with gr.Column():
chatbot = gr.Chatbot()
chat_state = gr.State()
question_txt = gr.Textbox(label="Question", lines=1)
btn_answer = gr.Button("Generate Answer")
btn_clear = gr.Button("Clear Chat")
btn_caption.click(
generate_caption, inputs=[input_image, caption_type], outputs=[output_text]
)
btn_answer.click(
chat,
inputs=[input_image, question_txt, chat_state],
outputs=[chatbot, chat_state],
)
btn_clear.click(clear_chat, inputs=[chat_state], outputs=[chatbot, chat_state])
gr.Examples(
[
["./merlion.png", "Beam Search", "which city is this?"],
[
"./Blue_Jay_0044_62759.jpg",
"Beam Search",
"what is the name of this bird?",
],
["./5kstbz-0001.png", "Beam Search", "where is the man standing?"],
[
"ILSVRC2012_val_00000008.JPEG",
"Beam Search",
"Name the colors of macarons you see in the image.",
],
],
inputs=[input_image, caption_type, question_txt],
)
gr.Markdown(
"Sample images are taken from [ImageNet](https://paperswithcode.com/sota/image-classification-on-imagenet), [CUB](https://paperswithcode.com/dataset/cub-200-2011) and [GamePhysics](https://asgaardlab.github.io/CLIPxGamePhysics/) datasets."
)
demo.launch()