Spaces:
Sleeping
Sleeping
float casting
Browse files- gradio_tst.py +21 -11
- regression_evaluator.py +1 -1
gradio_tst.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import json
|
|
|
2 |
import os
|
3 |
import re
|
4 |
import sys
|
@@ -7,10 +8,6 @@ from pathlib import Path
|
|
7 |
import numpy as np
|
8 |
from datasets import Value
|
9 |
|
10 |
-
import logging
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
15 |
|
16 |
|
@@ -27,7 +24,9 @@ def infer_gradio_input_types(feature_types):
|
|
27 |
for feature_type in feature_types:
|
28 |
input_type = "json"
|
29 |
if isinstance(feature_type, Value):
|
30 |
-
if feature_type.dtype.startswith(
|
|
|
|
|
31 |
input_type = "number"
|
32 |
elif feature_type.dtype == "string":
|
33 |
input_type = "str"
|
@@ -59,9 +58,13 @@ def parse_gradio_data(data, input_types):
|
|
59 |
data.dropna(inplace=True)
|
60 |
for feature_name, input_type in zip(data, input_types):
|
61 |
if input_type == "json":
|
62 |
-
metric_inputs[feature_name] = [
|
|
|
|
|
63 |
elif input_type == "str":
|
64 |
-
metric_inputs[feature_name] = [
|
|
|
|
|
65 |
else:
|
66 |
metric_inputs[feature_name] = data[feature_name]
|
67 |
return metric_inputs
|
@@ -79,9 +82,13 @@ def parse_test_cases(test_cases, feature_names, input_types):
|
|
79 |
parsed_cases = []
|
80 |
for feat, input_type in zip(feature_names, input_types):
|
81 |
if input_type == "json":
|
82 |
-
parsed_cases.append(
|
|
|
|
|
83 |
elif input_type == "str":
|
84 |
-
parsed_cases.append(
|
|
|
|
|
85 |
else:
|
86 |
parsed_cases.append(test_case[feat])
|
87 |
examples.append([list(i) for i in zip(*parsed_cases)])
|
@@ -94,7 +101,9 @@ def launch_gradio_widget2(metric):
|
|
94 |
try:
|
95 |
import gradio as gr
|
96 |
except ImportError as error:
|
97 |
-
logging.error(
|
|
|
|
|
98 |
raise error
|
99 |
|
100 |
local_path = Path(sys.path[0])
|
@@ -118,7 +127,8 @@ def launch_gradio_widget2(metric):
|
|
118 |
),
|
119 |
outputs=gr.Textbox(label=metric.name),
|
120 |
description=(
|
121 |
-
metric.info.description
|
|
|
122 |
" Alternatively you can use a JSON-formatted list as input."
|
123 |
),
|
124 |
title=f"Metric: {metric.name}",
|
|
|
1 |
import json
|
2 |
+
import logging
|
3 |
import os
|
4 |
import re
|
5 |
import sys
|
|
|
8 |
import numpy as np
|
9 |
from datasets import Value
|
10 |
|
|
|
|
|
|
|
|
|
11 |
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
12 |
|
13 |
|
|
|
24 |
for feature_type in feature_types:
|
25 |
input_type = "json"
|
26 |
if isinstance(feature_type, Value):
|
27 |
+
if feature_type.dtype.startswith(
|
28 |
+
"int"
|
29 |
+
) or feature_type.dtype.startswith("float"):
|
30 |
input_type = "number"
|
31 |
elif feature_type.dtype == "string":
|
32 |
input_type = "str"
|
|
|
58 |
data.dropna(inplace=True)
|
59 |
for feature_name, input_type in zip(data, input_types):
|
60 |
if input_type == "json":
|
61 |
+
metric_inputs[feature_name] = [
|
62 |
+
json.loads(d) for d in data[feature_name].to_list()
|
63 |
+
]
|
64 |
elif input_type == "str":
|
65 |
+
metric_inputs[feature_name] = [
|
66 |
+
d.strip('"') for d in data[feature_name].to_list()
|
67 |
+
]
|
68 |
else:
|
69 |
metric_inputs[feature_name] = data[feature_name]
|
70 |
return metric_inputs
|
|
|
82 |
parsed_cases = []
|
83 |
for feat, input_type in zip(feature_names, input_types):
|
84 |
if input_type == "json":
|
85 |
+
parsed_cases.append(
|
86 |
+
[str(element) for element in test_case[feat]]
|
87 |
+
)
|
88 |
elif input_type == "str":
|
89 |
+
parsed_cases.append(
|
90 |
+
['"' + element + '"' for element in test_case[feat]]
|
91 |
+
)
|
92 |
else:
|
93 |
parsed_cases.append(test_case[feat])
|
94 |
examples.append([list(i) for i in zip(*parsed_cases)])
|
|
|
101 |
try:
|
102 |
import gradio as gr
|
103 |
except ImportError as error:
|
104 |
+
logging.error(
|
105 |
+
"To create a metric widget with Gradio make sure gradio is installed."
|
106 |
+
)
|
107 |
raise error
|
108 |
|
109 |
local_path = Path(sys.path[0])
|
|
|
127 |
),
|
128 |
outputs=gr.Textbox(label=metric.name),
|
129 |
description=(
|
130 |
+
metric.info.description
|
131 |
+
+ "\nIf this is a text-based metric, make sure to wrap you input in double quotes."
|
132 |
" Alternatively you can use a JSON-formatted list as input."
|
133 |
),
|
134 |
title=f"Metric: {metric.name}",
|
regression_evaluator.py
CHANGED
@@ -97,7 +97,7 @@ class RegressionEvaluator(evaluate.Metric):
|
|
97 |
|
98 |
# Compute error functions
|
99 |
for fn in error_fns:
|
100 |
-
results[fn.__name__] = fn(references, predictions)
|
101 |
|
102 |
# Compute statistical measures with p-values
|
103 |
for fn in correlation_fns:
|
|
|
97 |
|
98 |
# Compute error functions
|
99 |
for fn in error_fns:
|
100 |
+
results[fn.__name__] = float(fn(references, predictions))
|
101 |
|
102 |
# Compute statistical measures with p-values
|
103 |
for fn in correlation_fns:
|