swastikdl commited on
Commit
ca2843d
·
verified ·
1 Parent(s): 12c844d
Files changed (1) hide show
  1. app.py +13 -6
app.py CHANGED
@@ -2,24 +2,31 @@ import gradio as gr
2
  import torch
3
  import time
4
  from fastai.vision.all import load_learner
 
5
  from PIL import Image
 
 
 
6
 
7
  # Load the exported model
8
- model = load_learner("model.pkl")
 
 
9
 
10
  # Function to classify an image
11
  def classify_images(imgs):
 
12
  start_time = time.time()
13
  results = []
14
  for img in imgs:
15
  # Convert gradio image to PIL Image
16
- pil_img = Image.open(img.name)
17
 
18
  # Perform inference
19
- pred_class, pred_idx, pred_probs = model.predict(pil_img)
20
 
21
  # Format output
22
- output = f"Image Name: {img.name} - Category: {pred_class}"
23
  results.append(output)
24
 
25
  # Calculate total inference time
@@ -31,8 +38,8 @@ def classify_images(imgs):
31
  return results
32
 
33
  # Create Gradio interface
34
- input_component = gr.inputs.File(label="Upload Image", type="file", multiple_files=True)
35
- output_component = gr.outputs.Textbox(label="Classification Results")
36
  interface = gr.Interface(fn=classify_images, inputs=input_component, outputs=output_component, title="Image Classifier")
37
 
38
  # Launch the Gradio interface
 
2
  import torch
3
  import time
4
  from fastai.vision.all import load_learner
5
+ from fastai.vision.all import *
6
  from PIL import Image
7
+ from pathlib import Path
8
+ import pathlib
9
+ import PIL
10
 
11
  # Load the exported model
12
+ temp = pathlib.PosixPath
13
+ pathlib.PosixPath = pathlib.WindowsPath
14
+ model = load_learner(r"C:\Users\i0567479\Downloads\model.pkl")
15
 
16
  # Function to classify an image
17
  def classify_images(imgs):
18
+ [print(x) for x in imgs]
19
  start_time = time.time()
20
  results = []
21
  for img in imgs:
22
  # Convert gradio image to PIL Image
23
+ #img = PILImage.create(img)
24
 
25
  # Perform inference
26
+ pred_class, pred_idx, pred_probs = model.predict(img)
27
 
28
  # Format output
29
+ output = f"Image Name: {Path(img).stem} - Category: {pred_class}"
30
  results.append(output)
31
 
32
  # Calculate total inference time
 
38
  return results
39
 
40
  # Create Gradio interface
41
+ input_component = gr.File(label="Upload Image", file_count='multiple')
42
+ output_component = gr.Textbox(label="Classification Results")
43
  interface = gr.Interface(fn=classify_images, inputs=input_component, outputs=output_component, title="Image Classifier")
44
 
45
  # Launch the Gradio interface