Spaces:
Running
Running
File size: 1,090 Bytes
7812f47 9bee20d 7812f47 4661cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import os
from svnm.models import GenderDetection
from datetime import datetime
# Create a directory for saving uploaded images
UPLOAD_DIR = "uploadimages"
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Load the model once
model = GenderDetection()
# Function to save image and make predictions
def classify_image(img):
# Generate a unique filename
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
img_path = os.path.join(UPLOAD_DIR, f"{timestamp}.jpg")
# Save the uploaded image
img.save(img_path)
# Make predictions using the model
label, conf = model.predict(img_path)
os.unlink(img_path)
return f"Label: {label}, Confidence: {conf*100:.2f}%"
# Define the Gradio interface
interface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"), # Updated Gradio input
outputs="text", # Output as text
title="Image Classification",
description="Upload an image to classify it into categories."
)
# Launch the interface
if __name__ == "__main__":
interface.launch(share=True)
|